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§1 Introduction

The course will be divided into three parts:

• Statistical learning theory (including empirical risk minimization).

• Computation (including (stochastic) gradient descent).

• Popular methods in practise.

The course will move from a more theoretical background to practical things. There is
a significant gap between the theory and the practise in machine learning, as will be seen
in the course.

§1.1 Conditional Expectation

The results stated here are true subject to certain convergence conditions. II Stochastic
Financial Models and II Probability and Measure deal with such things more formally.
For our purposes, we will use the results as tools to develop theory.

Definition 1.1 (Conditional density). Let Z and W be random variables with joint
density f(z, w), and let fW (w) be the marginal density of W (integrate over all z values).
Then the conditional density of z given w is

[Conditional expectation] In the same notation as above, we define the random variable
E [Z |W ] as

E [Z |W ] =

∫
zfZ|W (z,W )dz. (1)

Note that E [Z |W ] is a function of a random variable (W ), so is itself a random
variable. It is not simply a number, as ordinary expectations are.

Remark 1.2 (Digression: design choice). I have reorganised this section to include condtional
expectation things before the initial setup for ERM.This is because I have found conditional
expectation one of the most frustrating (though certainly necessary) parts of the course, so
any familiarity now will help later, but total familiarity is probably not to be expected.

Remark 1.3. We can interpret E [Z|W ] as ‘the function of W that’s our best guess for Z
given only the information contained in W ’a.

asee https://dynalist.io/d/bx3GM7El5D_PsHTOvxgJlTyW

Remark 1.4. In this course, whenever we are conditioning over something, think of this as
what is currently fixed.

Two examples from later in the course are in the definition of risk (9), we’ve chosen
our hypothesis h and are now evaluating the expectation of the loss (risk); we are NOT
considering some non-deterministic method for generating h for example

This is perhaps counterintuitive since of course E [Z|W ] is a random variable that’s a
function of W however ...

Interpretation (1.3) gives some intuition behind the next result, which generalises what
we did in IA.
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Theorem 1.5 (General tower property)

Let f : Rd → Rm and Z and W be random variables. Then

E[E[Z |W ] | f(W )] = E[Z | f(W )]. (2)

Theorem 1.6 (Taking out what is known)

Let f be real-valued. Then

E[f(W )Z |W ) = f(W )E[Z |W ]. (3)

As an example of how to use these tools,

Theorem 1.7 (Best least squares predictor)

The following holds:

E [Z − f(W )]2 = E [Z − E [Z |W ]]2 + E [f(W )− E [Z |W ]]2 . (4)

We will write out the extended details of how to apply our conditional expectation
theory to get this result.

Proof. Initially, add the obvious term to the LHS:

E [Z − f(W )]2 = E [Z − E [Z |W ] + E [Z |W ]− f(W )]2

= E [Z − E [Z |W ]]2 + E [f(W )− E [Z |W ]]2

−2E [Z − E [Z |W ]]E [f(W )− E [Z |W ]] .

So we need to show that E [Z − E [Z |W ]]E [f(W )− E [Z |W ]] = 0.
We do this by using the tower property to insert a condition on W :

E [Z − E [Z |W ]]E [f(W )− E [Z |W ]]

= E [E [Z − E [Z |W ]]E [f(W )− E [Z |W ]] |W ] .

From here we can pull out the latter expectation term, since it’s a function of W ,
by (1.6). The former term left inside the expectation is 0, since

E [Z − E [Z |W ] |W ] = E [Z |W ]− E [E [Z |W ] |W ]

= E [Z |W ]− E [Z |W ] = 0

using the tower property once more.

We’ll introduce terminology in the next section that means that this result is saying
that the hypothesis h : X → R minimising R(h) under squared error loss is h0(x) =
E [Y | X = x], and nothing deeper than this (by considering Z = Y and X = W ).

3
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Theorem 1.8 (Conditional Jensen)

Given convex f : R→ R,

E [f(Z) |W ] ≥ f(E [Z|W ]). (5)

Remark 1.9. To remember which way round Jensen’s inequality goes (keeping W constant)
choose f(x) = x2, and use that variance is non-negative.

The proof is in two parts. Both are not examinable, but while the full proof uses II
Probability and Measure and is outside the scope of the course, the lemma is an idea
from IA Probability that we will see used on several occasions in this course.

Lemma 1.10

Suppose that f : R→ R is convex. Then ∀x ∈ R, if

∂f(x) := {g : f(z) ≥ (z − x)g + f(x)} (6)

then

1. ∂f(x) = [a, b] where a ≤ b ∈ R.

2.

a = lim
ε↓0

f(x+ ε)− f(x)

ε
(7)

and

b = lim
ε↓0

f(x)− f(x− ε)
ε

. (8)

Proof. (Sketch) We will later interpret ∂f(x) as the set of subgradients at x, see
(3.9).

For 1), after drawing a picture of a convex function this should be clear. One sketch
proof is to consider [a0, b0], where a0 = f(x)− f(x− 1) and b0 = f(x+ 1)− f(x).
Then either these already work, or WLOG b0 fails because there’s some y ∈ (x, x+ 1)
below the line through (x, f(x)) with gradient b0. But by convexity this line will
have no points (z, f(z)) below it where z < x. Similarly the equivalent a0 line won’t
have points below it where z > x. So increasing a0 and decreasing b0 must lead to
an interval [a, b], because at some point we must ‘cross over’ from points lying below
on the left to points lying below on the right, and moreover by continuity we must
get [a, b] non-empty since there can’t be failures on both sides.

For 2), suppose not, then argue by convexity that actually there must be points
closer to x with gradient closer to a and b.

Proof. (Conditional Jensen) See [4], Theorem 23.9. The entire PDF is recommended for
a very good formalisation of conditional probability.

§1.2 Terminology

We will set up definitions in order to solve classification problems like MNIST or spam
detection.

4
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Consider a pair of random variables (X,Y ) ∈ X × Y with joint distribution P0. We
call X the input or predictor and Y the output or response.

Our goal is to predict Y from X. We do this via a hypothesis5 h : X → Y, and
measure the quality of the prediction using a loss function ` : Y × Y → R.

We can be in the classification setting where Y = {−1, 1}, and typically ` is the
misclassification loss, or ‘0-1 loss’ `(h(x), y) = 1 [h(x) 6= y]. Here, we refer to h as a
classifier.

Alternatively, we can be in the regression setting, where Y = R and typically ` is the
squared error: `(h(x), y) = (h(x)− y)2.

Our aim is to pick h with small risk

R(h) = E[`(h(X), Y ) | h]. (9)

We have the conditioning over h as we consider the classifier to be fixed; h will be
generally constructed from some random data, and this takes that into account.

A classifier h0 that minimises the 0-1 risk is called a Bayes classifier. Its associated
risk is the Bayes risk.

Define the regression function η as

η(x) = P(Y = 1 | X = x). (10)

Note that in practise we don’t have ‘access’ to η, since to know η we need to know the
joint distribution to evaluate it; Bayes risk essentially minimises population-wide risk.
We’ll go on to study empiricial risk minimisation (ERM), where we minimise risk with
respect to our ‘training data’ (a finite sample of data that we observe empirically).

Theorem 1.11

A Bayes Classifier is given by

h0(x) =

{
1 if η(x) > 1/2

−1 otherwise.
(11)

Proof. This is not a deep result. The 0-1 risk is just the dumb function ‘0 if we were
right, 1 if we were wrong’ so the risk, given X = x is

R(h(x)) = 1 [h(x) = 1]P [Y = −1 | X = x] + 1 [h(x) = −1]P [Y = 1 | X = x]

= 1 [h(x) = 1] (1− η(x)) + 1 [h(x) = −1] η(x).

Now we want to minimise this, so just do casework on η(x) < 1
2 , η(x) = 1

2 and
η(x) > 1

2 . In each case our Bayes classifier will be optimal.

In reality, we have training data that is a set of iid copies (X1, Y1), (X2, Y2), · · · ,
(Xn, Yn) of (X,Y ). We want to use this to construct ĥ minimising R(ĥ). Therefore the
conditioning in (9) will be on this training data, when considering R(ĥ).

The classical statistical approach is to model P0 using a parametric family. In this
approach, we need estimate these unknown parameters.

The machine learning approach is that we’re given a class H from which we will then
pick ĥ. In this approach, we will need an algorithm for picking ĥ.

5the use of the term is unlike the use in ‘hypothesis testing’ from statistics.
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Definition 1.12 (Sign). sgn is the sign (±1) of a real, and we define sgn(0) = −1 in
this course.

For this reason, in the two-class classification problem, we will label the classes with
+1 and −1 rather than 0 and 1, as seen elsewhere.

Example 1.13 (Examples of H)

H = {x 7→ sgn(µ+ xTβ)} (12)

where µ ∈ R and β ∈ Rp is one example of a class. Another is

H =

x 7→ sgn

∑
j

φj(x)wj

 (13)

where w ∈ Rd and φj ∈ B for a given class of functions B = {f : X → R}. Note
that these classes have, in general, many degrees of freedom.

§2 Statistical Learning Theory

As alluded to earlier, minimising population-wide risk is generally not practical nor
possible when applying ML methods. So almost all ML methods aim to minimise
empirical risk:

Definition 2.1 (Empirical Risk). Empirical risk or training error is the expectation of
the loss `(h(X), Y ) where (X,Y ) follows the empirical distribution (which will generally
(always?) be some number of iid samples from P0):

R̂(h) =
1

n

∑
i

`(h(Xi), Yi) (14)

Given some classH of hypotheses, the argmin over this set with respect to this empirical
risk is called the empirical risk minimiser.

We’ve used a lot of words, but there are immediate examples that this setup allows us
to describe:

Example 2.2 (Least squares regression from IB Statistics)

In this familiar setting, our class of hypotheses is

H = {x 7→ (µ+ xTβ)} (15)

where µ ∈ R and β ∈ Rp, and our loss function is squared error

`(Xi, Yi) = (Yi − µ−XT
i β)2. (16)

6
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Example 2.3 (0-1 classification)

If Y = {−1,+1}, H = {x 7→ sgnµ+ xTβ} (see (12)) and our loss is 0-1 loss, then
what we’re doing here is finding a hyperplane that divides space into two regions,
one for each of -1 and 1, and the empirical loss will be the number of 1s in the -1
region plus the number of -1s in the 1 region, all over n. Visually:

The hyperplane in this case is known as the decision boundary.

Definition 2.4 (Aitch, aitch and aitch). Let ĥ ∈ H be the hypothesis minimising
empirical risk.

Let h∗ ∈ H be the hypothesis minimising (population) risk over all H.
Let h0 be the function minimising (population) risk over all functions h : X → Y.

Note that h0, the ‘God hypothesis’ won’t be a perfect predictor, since our data comes
from P0, an inherently random distribution. We can now consider

R(ĥ)−R(h0) = R(ĥ)−R(h∗)︸ ︷︷ ︸
Excess risk from our

choice within hypothesis class.

+ R(h∗)−R(h0)︸ ︷︷ ︸
Appoximation error from our

choice of hypothesis class.

(17)

where the terms have the given interpretations. Furthermore, the first term can be
seen as a measure of how much we overfit to the training data, and the latter term how
much we underfit the underlying distribution by choosing too restrictive a H.

Write

R(ĥ)−R(h∗) = R(ĥ)− R̂(ĥ) + R̂(ĥ)− R̂(h∗)︸ ︷︷ ︸
≤0

+R̂(h∗)−R(h∗) (18)

≤ R(ĥ)− R̂(ĥ) + R̂(h∗)−R(h∗). (19)

where the middle term is non-positive since we chose ĥ to be optimal on the training
data.

We’ve interpreted all these terms already, except R̂(h∗). This is the risk of the
optimal classifier with respect to all H, but when it can only see the training data. So
R̂(h∗)−R(h∗) is another measure of how much we are overfitting.

7
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§2.1 Sub-Gaussianity and Hoeffding’s Inequality

Recall Markov’s inequality from IA Probability. Note that this is a simple inequality, but
has a nice consequence (on an example sheet from that course).

Theorem 2.5 (Chernoff Bound)

Let W be a random variable and α > 0. Then

P [W ≥ t] ≤ e−αtE
[
eαW

]
(20)

Proof. For any increasing function φ : R→ [0,∞), W ≥ t implies φ(W ) ≥ φ(t), so
in this case

P [W ≥ t] ≤ P
[
eαW ≥ eαt

]
≤ e−αtE

[
eαW

]
(21)

by Markov’s inequality, as required.

This is important since this has introduced an MGF.

Example 2.6 (A tail bound for Gaussian random variables)

Suppose W ∼ N(0, σ2), so has MGF E
[
eαW

]
= exp

(
1
2α

2σ2
)
. Then for t > 0,

P [W ≥ t] ≤ exp

(
−αt+

1

2
α2σ2

)
. (22)

Taking the infinimum over all α > 0, we get

P [W ≥ t] ≤ exp
(
−t/2σ2

)
. (23)

This derivation essentially uses bounding with MGFs. This motivates

Definition 2.7 (Sub-Gaussian). A random variable W is sub-Gaussian with parameter
σ > 0 if

E [exp (α(W − E [W ])] ≤ exp

(
1

2
α2σ2

)
(24)

for every α ∈ R.

i.e. after normalising to mean 0, the MGF of W is always less than the MGF of a
variance N(0, σ2) random variable.

8
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Example 2.8 (Basic properties of sub-Gaussian random variables)

Let W be a sub-Gaussian random variable with parameter σ > 0. Then

• W is sub-Gaussian for all σ′ ≥ σ.

• −W is also sub-Gaussian.

• P [W − E [W ] ≥ t] ≤ exp
(
−t2/2σ2

)
.

• P [|W − E [W ] | ≥ t] ≤ 2exp
(
−t2/2σ2

)
Proof. The first two remarks are immediate. To see the third, apply the Chernoff
bound since it directly introduces an MGF. The fourth is then a corollary of the
third, using the second.

The third property is called the sub-Gaussian tail bound, and we will repeatedly
use it.

Definition 2.9. A Rademacher random variable ε takes values ±1 with equal probability.

Theorem 2.10

A Rademacher random variable is sub-Gaussian with σ = 1.

Proof. Directly compute

E [eαε] =
1

2
(eα + e−α) =

∞∑
k=0

α2k

(2k)!

≤
∞∑
k=0

(
α2

2

)k
1

k!

= eα
2/2.

How does this relate to ERM? This brings us onto the first deeper result of the course.

Theorem 2.11 (Hoeffding’s Lemma)

If W takes values in an interval [a, b], then W is sub-Gaussian with parameter
(b− a)/2.

We will mention three proofs. The first is direct and elementary (from [3]). The
second (lectured) will prove the weaker result with σ = b− a, using a technique called
symmetrisation which will use again later. On the example sheet, a change of measure
argument10 is used to prove the full result.

Proof 1: elementary. It suffices to prove the result for W with values in [0, 1].

10see [2], also.

9
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We can directly show that E
[
eα(W−E[W ])

]
≤ e−αE[W ](E [W ] (eα − 1) + 1) by Taylor

expansion, and then verify that that RHS expression is at most e
1
8
α2

for all α, which is
sufficient.

Proof 2: symmetrisation. To check whether a random variable is sub-Gaussian we nor-
malize so the mean is zero, so WLOG assume E [W ] = 0.

We want to use the results already established for Rademacher random variables, and
to do this we cook up W ′ an independent copy of W so that the random variable W −W ′
is symmetric about 0, meaning that ε(W −W ′) and W −W ′ have the same distribution

(written W −W ′ d= ε(W −W ′)). We write

E
[
eαε(W−W

′) |W,W ′
]
≤ exp

(
α(W −W ′)2/2

)
≤ exp

(
α2(b− a)2/8

)
, (25)

where conditioning on W,W ′ effectively fixes these random variables, allowing us to
use the Rademacher result.

We relate this back to W by noting that the familiar linearity of expectation property

E [X + Y | Z] = E [X | Z] + E [Y | Z] (26)

(where all the expectations are defined) holds, so we have that

α(W − E [W ]) = E
[
α(W −W ′) |W

]
. (27)

Therefore

E [exp (αW )] = E
[
exp

(
α(W − E

[
W ′
]
)
)]

(28)

= E
[
exp

(
E
[
α(W −W ′) |W

])]
(29)

≤ E
[
exp

(
α(W −W ′)

)]
. (30)

where in the last step we apply conditional Jensen, and then simplify via the tower
property in the degenerate case conditioning on some constant random variable, to go
from to expectation signs to just one.

Finally, we can use the tower property once more to write the equality

E
[
exp

(
α(W −W ′)

)]
= E

[
E
[
exp

(
αε(W −W ′)

)
|W,W ′

]]
(31)

where to be specific, we choose the f in the tower property statement to be some
degenerate (e.g constant) function to complete the argument (in essence we omit something
like ‘... | 42]’ at the end of both of the above expectation expressions). We’ve recovered
(25), so we’re done.

10
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Theorem 2.12

Suppose W1, . . . , Wn are independent and each Wi is sub-Gaussian with parameters
σi > 0. Then for all γ ∈ Rn, γTW is sub-Gaussian with parameter√∑

i

γ2
i σ

2
i . (32)

Proof. As before, WLOG E [Wi] = 0. Then consider the MGF of γTW , which
factorises via independence.

Theorem 2.13 (Hoeffding’s Inequality)

Suppose W1, . . . , Wn are independent and bounded random variables, with ai ≤
Wi ≤ bi.

P

[
1

n

∑
i

(Wi − E [Wi]) ≥ t

]
≤ exp

(
−2n2t2∑
i(ai − bi)2

)
(33)

Proof. This is in the form of (2.12), so apply (2.8).

Theorem 2.14 (Upper bound on sub-Gaussian, mean zero random variables)

Suppose W1, . . . , Wd are sub-Gaussian random variables with mean 0 and parameter
σ > 0. Then

E [maxW ] ≤ σ
√

2 log d. (34)

Proof. We see sub-Gaussian things, so we gravitate towards an MGF. For α > 0,

E [max(exp (αW ))] = E [exp (αmaxW )] (35)

≥ exp (αE [maxW ]) (36)

by applying Jensen. So we can concern ourselves with that initial expression, and
crudely bound the maximum with a sum (when we can’t make further progress
because we make almost no distributional assumptions in this course, we will often
do this ‘union bound’ trick):

E [max(exp (αW ))] ≤
∑

E [exp (αW )] ≤ dexp
(
α2σ2/2

)
(37)

now this works for any α, and after rearranging and finding the α that gives us
the sharpest inequality, we get the result.

It’s worth noting that while this result makes no distributional assumptions on the Wi,
it is ‘more striking’ in some sense when the Wi are independent; where the variables are
well correlated, the max won’t differ too much from, say, W1.

11
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§2.2 Finite Hypotheses Classes

We have developed enough theory to prove an important bound on the risk of the
ERM. Firstly an obvious remark that’s easy to get the wrong way round, so is worth
internalising.

Remark 2.15 (The ‘If A then B or C’ inequality.). Let A be an event in a probability
space. Suppose that A ⊆ B ∪ C, having the interpretation that ‘if A, then one of B or C
must hold’. Then we have the inequality

P[A] ≤ P[B] + P[C]. (38)

12
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Theorem 2.16 (Finite hypothesis class excess risk bound)

Suppose H is finite and ` takes values in [0,M ]. Then with probability at least 1− δ,
the ERM ĥ satisfies

R(ĥ)−R(h∗) ≤M
√

2(log |H|+ log(1/δ))

n
. (39)

Proof. In the notation of Hoeffding’s inequality (2.13), we have ai = 0 and bi = M ,
and the RHS of the bound of that inequality is therefore exp

(
−2nt2/M2

)
.

Recall we can write

R(ĥ)−R(h∗) = R(ĥ)− R̂(ĥ) + R̂(ĥ)− R̂(h∗)︸ ︷︷ ︸
≤0

+R̂(h∗)−R(h∗) (40)

(where the inequality holds since ĥ is optimal over the training data).
Let t > 0. Then

P
[
R(ĥ)−R(h∗) > t

]
= P

[
R(ĥ)−R(h∗) > t, ĥ 6= h∗

]
(41)

≤ P
[
R(ĥ)− R̂(h∗) > t/2, ĥ 6= h∗

]
+ P

[
R̂(h∗)−R(h∗) > t/2

]
(42)

using the trick (2.15). The latter term is actually pretty much in the form of
Hoeffding’s inequality, specifically

P
[
R̂(h∗)−R(h∗) > t/2

]
= P

[
1

n

∑
`(h∗(Xi), Yi)− E [`(h∗(Xi), Yi)] > t/2

]
(43)

≤ exp

(
− nt2

2M2

)
(44)

by that result. For the first term, we have to get a bit messy (as we have already
done by excluding h∗ as we did) to be able to get a clean final form, and introduce
H− = H \ {h∗}. When ĥ ∈ H−, R(ĥ) − R̂(ĥ) ≤ maxh∈H− R(h) − R̂(h). Now we
know nothing about h∗ and therefore have to use crude union bounding once more:

P
[
R(ĥ)− R̂(h∗) > t/2, ĥ 6= h∗

]
≤ P

[
max
h∈H−

R(h)− R̂(h) > t/2

]
(45)

= P

 ⋃
h∈H−

{R(h)− R̂(h) > t/2}

 (46)

≤
∑
h∈H−

P
[
R(h)− R̂(h) > t/2

]
(47)

≤ (|H| − 1)exp

(
− nt2

2M2

)
(48)

So

P
[
R(ĥ)−R(h∗) > t

]
≤ |H|exp

(
−nt2/2M2

)
= δ (49)

and we get the result by rearranging this for t.
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Note — Note that we have to go through the process of the union bound for the
R(ĥ)− R̂(ĥ) term but not the R̂(h∗)−R(h∗) term: this is because h∗ is independent
of the training data sample and therefore R(h∗) = E [`(h∗(Xi), Yi)] which means we
can apply Hoeffding.

However, R(ĥ) cannot be decomposed as cleanly and therefore we need the union
bound trick.

This will cause us even bigger problems later on when H is infinite, and the union
bound will not even work!

Note that a similar bound could be found by applying the central limit theorem, since
our setup involves a bunch of iid random variables. However, our result is not asymptotic,
unlike the limit theorems we’ve seen before.

This result is something to be positive about: in loose terms, even if H is pretty large,
we don’t need that much training data to ensure our ERM has low excess risk.

Example 2.17 (The histogram classifier)

Consider the classification setting X = [0, 1)2. Divide [0, 1)2 into m2 disjoint squares
R0, ... , Rm2−1 where

Rim+j =

[
i

m
,
i+ 1

m

)
×
[
j

m
,
j + 1

m

)
. (50)

Also let

Ȳj = sgn
∑

i:Xi∈Rj

Yi (51)

i.e. these output what the majority of the points in each square are (there’s
annoying mismatch between -1 and 1, and 0 and 1 here). And finally

ĥhist(x) =

m2−1∑
j=0

Ŷj1 [x ∈ Rj ] (52)

i.e. classify based on plurality of training data in the region that the test data
lands in.

With H being the size 2m
2

set of hypotheses classifying based on which 1/m square
a point falls in, we can bound the risk with (2.16).

It can be shown that we approach the Bayes classifier in this scenario, as we
increase m (in some limit scenario).

§2.3 Infinite Hypotheses Classes

What happens to our theory when |H| =∞? There are two terms in (19), one involving
ĥ and one involving h∗. For the former term the same techniques that worked before
work again, but for the latter term we controlled it by summing over all h ∈ H (the
union bound trick). This won’t work now, so we need to figure out how to work with

G(Z1, ..., Zn) = sup
h∈H

R(h)− R̂(h) (53)

where Zi = (Xi, Yi).

14
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However a key property that we used before, when G was an average, is that when
we have a bunch of iid random variables Z1, ..., Zn ∈ X × Y, each of these does not
contribute greatly to the the average.

Indeed, let ε > 0. Then let h̃ ∈ H be an ‘ε-good’ hypothesis in the sense that

G(z1, ..., zn) < R(h̃)− R̂(h̃) + ε (54)

Consider perturbing WLOG the first argument of G. Then we have that

G(z1, ..., zn)−G(z′1, z2, ..., zn) <
1

n
{`(y′1, h̃(x′1))− `(y1, h̃(x1))}+ ε (55)

which is a formalisation of the intuitively clear idea that individual data points do not
affect the ‘global’ gap in excess risk too much (due to the factor of 1/n).

In fact if the loss takes values in [0,M ], and ε > 0 is arbitrary,

|G(z1, ..., zn)−G(z1, ..., z
′
i, ..., zn)| ≤ M

n
. (56)

for a perturbed i. Such an inequality is called a bounded differences property.

§2.4 Bounded Differences Inequality

For our next result, we will need the following notation and definition:
For a sequence as, as+1, ... write aj:k for the subsequence aj , ..., ak.

Definition 2.18 (Martingale difference sequence). A sequence of random variables
D1, ..., Dn is a martingale difference sequence with respect to another sequence of
random variables W0, ...,Wn if, for 1 ≤ i ≤ n,

1. E [|Di|] <∞.

2. Di is a function of W0:i.

3. E [Di |W0:i−1] = 0.

Example 2.19

If D1, ..., Dn are independent and mean zero and satisfy the first property, then
they are a martingale difference sequence with respect to c,D1, ..., Dn where c is a
deterministic constant.

We will first need two preliminary results to prove the bounded differences inequality

15
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Theorem 2.20 (2.12 for martingale random variables)

Let D1, ..., Dn be a martingale difference sequence with respect to W0, ...,Wn such
that

E [exp (αDi) |W0:i−1] ≤ exp

(
1

2
α2σ2

i

)
(57)

holds for all α and all i. Also let γ ∈ Rn. Then
∑

i γiDi is sub-Gaussian with

parameter
√∑

i σ
2
i γ

2
i .

Proof. By the tower property

E

[
exp

(
α

n∑
i=1

γiDi

)]
= E

[
E

[
exp

(
α
n−1∑
i=1

γiDi

)
exp (αγnDn) |W0:n−1

]]
(58)

and now we can use taking out what is known since D0:n−1 is a function of W0:n−1,
which will leave the last term in the inner expectation as something our assumptions
gave us control over:

≤ E

[
exp

(
α
n−1∑
i=1

γiDi

)
exp

(
1

2
α2γ2

nσ
2
n

)]
(59)

and at this point we can pull out that second factor and apply the same tower
trick a further n− 1 times to get

≤
n∏
i=1

exp

(
1

2
α2γ2

i σ
2
i

)
= exp

(
1

2
α2

n∑
i=1

γ2
i σ

2
i

)
. (60)
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Theorem 2.21 (Azuma-Hoeffding)

Let D1, ..., Dn be a martingale difference sequence with respect to W0, ...,Wn. Sup-
pose also that for each i we have random variables Ai and Bi that are bounds for
Di (Ai ≤ Di ≤ Bi) that differ by at most Li where the Lis are constant, and that
Ai and Bi are also functions of W0:i−1. Then for t ≥ 0,

P

[
n∑
i=1

Di ≥ t

]
≤ exp

(
−2t2

/∑
i

L2
i

)
. (61)

Proof. Conditional on W0:i−1, Ai and Bi are fixed, so Di is a bounded random
variable and hence we’re in the setting where we can apply Hoeffding’s lemma with
this conditioning. Therefore we have the moment generating function bound

E
[
eαDi |W0:i−1

]
≤ exp

(
1

2
α2

(
Li
2

)2
)

(62)

which means we can apply (2.20) to deduce that
∑n

i=1Di is sub-Gaussian with

parameter 1
2

√∑
i L

2
i . So we can apply the sub-Gaussian tail bound and we get the

desired result.
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Theorem 2.22 (Bounded differences inequality)

Let f : Z1 × ...×Zn → R satisfy a bounded differences property

f(w1:n)− f(w1:i−1, w
′
i, wi+1:n) ≤ Li (63)

∀w1 ∈ Z1, ..., w
′
i ∈ Zi, ..., wn ∈ Zn where 1 ≤ i ≤ n. Suppose random variables

W1 ∈ Z1, ...,Wn ∈ Zn are independent. Then

P [f(W1:n)− E [f(W1:n)] ≥ t] ≤ exp

(
−2t2

/∑
i

L2
i

)
. (64)

Proof. Introduce the deterministic random variable W0 = c (c arbitrary and con-
stant). Then we can turn our expression into a sum of a bunch of random variables
as follows:

f(W1:n)− E [f(W1:n)] =
∑
i

E [f(W1:n) |W0:i]− E [f(W1:n) |W0:i−1]︸ ︷︷ ︸
Di

. (65)

Since this will telescope, and the first term comes out through conditional expec-
tation. Now Di is a martingale difference sequence with respect to W0, ...,Wn, since
checking the definition,

1. f satisfies the bounded differences inequality so itself must be bounded (it will
vary by at most

∑
Li).

2. Is clear.

3. Follows from the tower property, since W0:i−1 is a function of itself, and also a
function of W0:i.

We now want to cook up Ai and Bi in the notation of Azuma-Hoeffding. Let
Z0 = {c}. Define

Fi : Z0 × ...×Zi → R (66)

by (w0, ..., wi) 7→ E [f(W0:n) |W0:i = w0:i] and so we have

Di = Fi(W0:i)− Fi−1(W0:i). (67)

Now force Ai ≤ Di ≤ Bi in the most blatant way possible:

Ai = inf
wi

Fi(W0:i−1, wi)− Fi−1(W0:i−1) (68)

and let Bi be the corresponding supremum (recall these are supposed to be
functions of W0:i−1).

Then Bi −Ai ≤ Li because the Fi−1 terms cancel, so after expanding,

Bi −Ai ≤ sup
wi,w′i

{
E[f(W0:i−1, wi,Wi+1:n)− f(W0:i−1, w

′
i,Wi+1:n)|W0:i−1]

}
≤ Li.

(69)
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This is a generalisation of Hoeffding’s inequality, by taking Zi = [ai, bi] and f(W1:n) =
1
n

∑
Wi, where the boundedness of the random variables in Hoeffding’s inequality give

the bounded differences property.

§2.5 Rademacher Complexity

We still want to develop some more tools in the |H| =∞ case.
Recall the inequality (17). We can now introduce the supremum quantity G (53) to

further write

R(ĥ)−R(h∗) ≤ R(ĥ)− R̂(ĥ) + R̂(h∗)−R(h∗) (70)

≤ G− E [G]︸ ︷︷ ︸
controllable by bounded differences (2.22)

+ R̂(h∗)−R(h∗)︸ ︷︷ ︸
controllable by Hoeffding’s (2.13)

+E [G] . (71)

so we need to figure out how to control E [G].
Now define the set of functions (indexed by hypotheses)

F = {(x, y)
f7−→ −`(h(x), y)|h ∈ H} (72)

(check the order of terms in G to verify that we do need a minus sign here) so that we
can rewrite

G = sup
f∈F

1

n

n∑
i=1

f(Zi)− E [f(Zi)] . (73)

We’re going to develop a result that controls terms like that in the summand.
For each f we get a mean zero random variable, and we’re taking a supremum over

these random variables. We’ve already established a result about the maximum of some
mean zero sub-Gaussian random variables (2.14); E [maxWi] ≤ σ

√
2 log d. But here d is

infinite, so we can’t (yet) apply it. So, more technology!

Definition 2.23 (More Rademacher terminology). The Rademacher complexity of a
set S ⊆ Rn is defined as

R(S) = E

[
sup
s∈S

n∑
i=1

εisi

]
(74)

We now extend this definition to be (loosely) a measure of the expressivity power of a
class of hypotheses. Let F be a class of functions f : Z → R and let z1, ..., zn ∈ Z. Then

F(Z1:n) = {(f(Z1), ..., f(Zn))|f ∈ F} (75)

is the set of ‘behaviours’ that can be exhibited on Z1:n. Then define the empirical
Rademacher complexity as

R̂(F(z1:n)) = E

[
sup
f∈F

1

n

n∑
i=1

εif(zi)

]
. (76)

Given iid Z1:n, we sometimes view the empirical Rademacher complexity as a random
variable via conditioning:

R̂(F(Z1:n)) = E

[
sup
f∈F

1

n

n∑
i=1

εif(Zi) | Z1:n

]
. (77)
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Finally, define the Rademacher complexity of F as Rn(F) = E
[
R̂(F(Z1:n))

]
.

Theorem 2.24

Let F be a class of functions f : Z → R and let Z1, ..., Zn ∈ Z be iid random
variables. Then

E

[
sup
f∈F

1

n

n∑
i=1

f(Zi)− E [f(Zi)]

]
≤ 2Rn(F). (78)

Proof. Symmetrization.
Let Z ′1:n be an independent copy of Z1:n (I don’t think there is any assumption

that the Z are all distributed in the same way (as training data probably would be).
This is a more general situation). We can use this to ‘bring the expectation out’
of the inner term being expected over as follows, and crucially we end up with a
symmetric distribution within the expectation:

sup
f∈F

1

n

n∑
i=1

f(Zi)− E [f(Zi)] = sup
f∈F

1

n

n∑
i=1

E
[
f(Zi)− f(Z ′i)|Z1:n

]
(79)

≤ E

[
sup
f∈F

1

n

n∑
i=1

f(Zi)− f(Z ′i)|Z1:n

]
(80)

where in the first equality we use that E [X|X] = X and E [X|Y ] = E [X] where X
and Y are independent, and in the inequality we use supE [−] ≤ E [sup−] (because
each individual expectation is at most the expectation of the sup, so then we can
take sup).

Let ε1:n be iid Rademachers. Magically,

sup
f∈F

1

n

n∑
i=1

f(Zi)− f(Z ′i) =d sup
f∈F

1

n

n∑
i=1

εi(f(Zi)− f(Z ′i)). (81)

Now take expectation of the above inequality, and break up the sup as follows:

≤ E

[
sup
f∈F

1

n

n∑
i=1

εif(Zi) + sup
f∈F

1

n

n∑
i=1

εif(Z ′i)

]
≤ 2Rn(F) (82)

where we can turn the negative in positive due to the εi being symmetric.

we can now state and prove the bound for the excess risk that this part of the course
has been working towards:
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Theorem 2.25

Let F = {(x, y) 7→ `(h(x), y)|h ∈ H} and suppose ` takes values in [0,M ]. Then
with probability at least 1− δ,

R(ĥ)−R(h∗) ≤ 2Rn(F) +M
√

2 log(2/δ)/n. (83)

Proof. Let G = suph∈HR(h)− R̂(h). We have our old friend, the bound

R(ĥ)−R(h∗) ≤ G− E [G] + R̂(h∗)−R(h∗) + E [G] (84)

and now we know that that last term is at most 2Rn(F). Now viewing G as a
function of all the Zi, it satisfies a bounded differences property with Li = M/n
(56). So we can apply the bounded differences inequality directly:

P [G− E [G] ≥ t/2] ≤ exp

(
− nt2

2M2

)
. (85)

Applying Hoeffding (or the generalisation; bounded differences with the average
function) gives that

P
[
R̂(h∗)−R(h∗) ≥ t/2

]
≤ exp

(
− nt2

2M2

)
. (86)

Now we can pick the t values such that

δ = 2exp

(
− nt2

2M2

)
(87)

and then the result falls out.

Recall the inequality (83), that involves the Rademacher complexity Rn(F).
The Rademacher complexity is computed by assigning uniformly random ±1 variables

to all the empirical losses and then taking this sup, and hence loosely is a measure of
how ‘wild’ the various ±1 strings we can get from (f(z1), ..., f(zn)) are (since if these are
all similar, this expected value will be lower).

Theorem 2.26

Rn(F) = E

[
sup
f∈F

1

n

n∑
i=1

εif(Zi)

]
(88)

Rn(F) = E
[
R̂(F(Z1:n))

]
= E

E
[

sup
f∈F

1

n

n∑
i=1

εif(Zi)|Z1:n

]
︸ ︷︷ ︸

R̂(F(Z1:n))

 = E

[
sup
f∈F

1

n

n∑
i=1

εif(Zi)

]

(89)
by using the degenerate case of the tower property, and (77).

Recall that if W1:d are mean zero σ-sub-Gaussian random variables then E [maxW ] ≤
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σ
√

log d. We can apply that to the inner expectation since the conditioning essentially
fixes the f(Zi), and then we simply have a linear combination of Rademachers, which
is sub-Gaussian by (2.12). Having done this conditioning, we are essentially concerned
with bounding the size of the set of ±1 strings mentioned above.

§2.6 VC Dimension

Consider the classification setting with 0− 1 loss. We aim to bound Rn(F), where the
function class is the set of loss maps again (72).

Note that if x1:n ∈ X n and class labels y1:n ∈ {−1,+1}n and zi = (xi, yi) then
|F(z1:n)| = |H(z1:n)|, because there’s a bijection

(`(h(xi), yi))
n
i=1 ↔ (h(xi))

n
i=1 (90)

since the yis are fixed and so we can just cross check these terms. This is essentially a
bijection of multisets however, since two different hypotheses could be identical on the
training data.

Theorem 2.27

R̂(F(z1:n)) ≤
√

2 log |F(z1:n)|
n

. (91)

Let |F(z1:n)| = d and let F ′ = {f1, ..., fd} ⊆ F be the set of distinct behaviours.
Given Rademacher random variables ε1:n set Wj = 1

n

∑n
i=1 εifj(zi). Then

R̂(F(z1:n)) = E [maxjWj ].
Each εi is sub-Gaussian with parameter 1, so we can apply the linear combination

of sub-Gaussians result; Wj is sub-Gaussian with parameter
√

1
n2

∑n
i=1 f

2
j (zi) ≤ 1√

n

(the bound because we’re dealing with 0− 1 loss). Also E [Wj ] = 0, and so by (2.14)
we’re done.

Essentially, we’ve reduced the complicated world of probability to the more beautiful
world of combinatorics, since this bound involves the size of a set.

How can we bound this count of the number of behaviours?

Definition 2.28. Let F be a class of functions f : X → {a, b} and |F| ≥ 2. We say that
f shatters x1:n if |F(x1:n)| = 2n i.e every possibility of assigment occurs for some f ∈ F .

Also define the shattering coefficient s of a class of functions by

s(F , n) = max
x1:n∈Xn

|F(x1:n)|. (92)

Note that this must be bounded above by 2n.
How do we interpret these? Shattering seems to mean our hypotheses leave every

possibility open. The shattering coefficient asks us to find data points that lead to the
wildest set of behaviours when we apply F to them.

We need s(F , n) to be bounded by something better than 2n since plugged into (2.27)
this would give an n-independent bound.

Definition 2.29. Define the VC dimension V C(F) to be the largest n such that there
exists x1:n shattered by F , or if no such n exists define V C(F) = +∞.
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Example 2.30 (Shattering coefficient bound and VC dimension where |H| =∞)

Suppose F = {1 [[a, b)] |a ≤ b ∈ R}, the set of [a, b) windows, an infinite function
class.

To compute the shattering coefficient of this class, consider x1 < x2 < ... < xn
which divide the real line into n+ 1 intervals. Then our length n binary strings will
turn out to be the same iff a and a′ are in the same interval, and b and b′ are in
the same interval. So s(F , n) ≤

(
n+1

2

)
+ 1, where the +1 comes from choosing some

really dumb interval that gives us an all zero string.
We can shatter all two points:

But can’t shatter distinct x1 < x2 < x3 since the binary string {1, 0, 1} can’t be
generated by our simple interval indicator class. So V C(F) = 2.

The lesson here is that despite being an infinite hypothesis class, F has a asymp-
totically sharp shattering coefficient bound.

Actually, we have the surprising result that shattering coefficients grow polynomially
with n, which is strongly constrasted with the trivial 2n bound.
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Theorem 2.31 (Sauer-Shelah)

Let F have finite VC dimension d. Then

s(F , n) ≤
d∑
i=0

(
n

i

)
≤ (n+ 1)d. (93)

Proof. Non-examinable.
First pick any x1:n. We claim that there are at least |F(x1:n)| − 1 non-empty

subsets of indices of 1 : n such that F shatters these indices.
The result follows from this since we can specialise to the x1:n that achieves the

shattering coefficient bound; where we’ll have |F(x1:n)| = s(F , n), and then the
binomial coefficent falls out since we can’t shatter any size > d subsets by definition
of VC dimension.

The claim is true since we can induct on k := |F(x1:n)| (note we may assume the
result holds for any n with this style of induction). The base case of size k = 1 is
vacuous. Assume we have the result for all k′ ≤ k. We’ll show we get the result with
k + 1.

The idea is that since we assumed way back that |F| ≥ 2 always we can find an
xj such that we can decompose F = F+ t F− (here, F = F(x1:n) has size k + 1)
into non-empty subsets such that the first always classifies xj as 1, and the latter
always as −1. Then the non-empty condition means we are now able to apply an
induction procedure. We just do clever counting.
|F| = |F+|+ |F−| and hence we have two positive integers summing to k + 1 and

hence the inductive hypothesis gives that the sets X+ and X− of vectors shattered
the two subsets have sizes summing to at least k − 1 (we can’t do better due to the
−1 in hypothesis). Then for everything in the intersection of X+ and X−, we can
add xj to these subsets of x1:n and get a genuinely new shattered vector. Finally
the singleton (xj) can be shattered by the non-empty condition. We can put this
together to get at least

1 + |X+ ∩ X−|+ |X+ ∪ X−| = |X+|+ |X−|+ 1 ≥ (k − 1) + 1 ≥ k (94)

subsets shattered by F . So we’re done.

Corollary 2.32

Rn(F) ≤
√

2V C(F) log(n+ 1)

n
(95)

(recall (2.27) and shattering definition).
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Example 2.33

Let X = Rp and consider the class F = {1 [A] | A ∈ A} where

A =


p∏
j=1

(−∞, aj ] | a1, ..., ap ∈ R

 . (96)

We claim that V C(F) = p.
After unpacking definitions, it is clear that we can shatter n points.
It’s slightly less easy to see that we can’t shatter p+ 1 points. After checking the

small cases for n, it’s clear that we have some point which is not ‘extreme’ in some
direction (or at very least, is not uniquely extreme in some direction). Then we can
cook up a binary string with 0 in the place of this entry, and 1 everywhere else, and
we can’t get this behaviour.

Theorem 2.34

Let F be a vector space of functions. Then we can consider the class of classifiers
H = {sgn ◦ f | f ∈ F}. Then

V C(H) ≤ dimF . (97)

Proof. We can first note that this generalises the previous result (I think I could
cook up things to make this work with some zero product thing).

Let d = dimF+1 and take x1:d ∈ X d. We need show that x1:d cannot be shattered
by H.

Consider the linear map L : F → Rd defined by f 7→ (f(x1), ..., f(xd)). Then the
image dimension is at most d−1 by rank-nullity. From here, take γ 6= 0 orthogonal to
this image space. Then break γ down in to its positive and non-negative components;
let γi > 0 for all i ∈ I+ and γi < 0 for all i ∈ I−. Then∑

i∈I+

γif(xi) +
∑
i∈I−

γif(xi) = 0 (98)

holds for all f ∈ F . Then the behaviour where f(xi) = ±1 on I± cannot be
observed since if so, the LHS of (98) would be positive.
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Example 2.35

Consider X = [0, 1)2 and F to be the set of polynomials of degree at most d, and
define H as the set of signs of these polynomials as seen in (2.34).

Then by stars and bars, dimF =
(
d+2

2

)
. So if d = 5 then V C(H) ≤ 21 and

previous results (namely, (83) and the VC bound (2.6)) imply

R(ĥ)−R(h∗) ≤ 2

√
2× 42 log(n+ 1)

n
+

√
2 log(2/δ)

n
. (99)

Comparing to the histogram classifier (2.17), with the finite hypothesis class bound,
we had

R(ĥ)−R(h∗) ≤
√

2m2 log 2 + 2 log(1/δ)

n
(100)

where *importantly*, the two h∗s are different: we’re dealing with two different
hypothesis classes.

with probability at least 1− δ.

and with that example over, we finish the most stats-heavy part of the course. Phew!

§3 Computation for ERM

It turns out that the discontinuity of 0-1 loss means computation of the ERM is com-
putationally intractable. We will therefore adjust our theory to work with convex loss
functions that will still have values in [0,M ]. This will mean that our result (2.25) will
hold, although we will need to figure out what Rademacher complexity become with this
new loss function.

§3.1 Convex sets

Definition 3.1. C ⊂ Rd is convex if all lines segments lie entirely in C.

Example 3.2 (Basic properties of convex sets)

Intersections of convex sets are themselves convex.

Definition 3.3. The convex hull of S ⊂ Rd, written convS is the intersection of all
convex sets containing S. By the above, it is unsurprisingly convex.

Definition 3.4. v ∈ Rd is a convex combination of v1, ..., vm ∈ Rd if the α are
non-negative and sum to 1 and

v = α1v1 + ...+ αmvm. (101)
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Lemma 3.5 (Convex combinations ... are what you think they are)

For S ⊂ Rd, v ∈ convS iff v is a convex combination of some set of points in S.

Proof. Let D be the set of all convex combinations of points from S.
Then convS ⊂ D is on the example sheet.
To show D ⊂ convS induct on the number m of non-zero α terms appearing in

(101). The case m = 1 is clear. Then for m+ 1 non-zero terms WLOG making the
indices nice,

v = α1v1 + ...+ αm+1vm+1 = t
(α1

t
v1 + ...+

αm
t
vm

)
+ (1− t)vm+1. (102)

and terms here must indeed lie in convS by its convexity.

Theorem 3.6

Let S ⊂ Rd. For any linear map L : Rd → Rm, convL(S) = L(convS).

Proof. As before, intuitively clear. To formalise, use the convex combination charac-
terisation and work both ways.

§3.2 Convex functions

We define (strictly) convex functions as we did in IB Optimisation.

Definition 3.7. Let C ⊂ Rd be convex. Then f : C → R is convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (103)

∀t ∈ (0, 1), and x 6= y ∈ C. f is strictly convex if the inequality is strict.

Example 3.8 (Properties of convex functions)

Unsurprisingly, convex functions are closely related to convex sets. The following
results are clear and/or on the second example sheet.

• If f is convex then D = {x ∈ C | f(x) ≤M} is convex.

• The level sets of convex functions are convex sets.

• An important case of the first point is when the convex function is when applied
to norm functions, which are always convex.

• If f is C2 then f is convex iff its Hessian matrix is positive semi-definite. This
is because of the supporting hyperplane (I think).

Definition 3.9. The epigraph of a convex function is the set of points

C = {(z, y) ∈ Rd × R : y ≥ f(z)}. (104)
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Why do we care about convex functions? It’s because they allow global properties
to be deduced from local properties; knowing f(x) and f(y) allows us to know a lot of
things about all the values on the line segment joining x and y. Local maxima will also
be global maxima, obviously important for machine learning.

§3.3 Convex surrogates

Consider H = {x 7→ sgnβTx | β ∈ Rp}. To compute the ERM we need minimise (over β)

1

n

n∑
i=1

1
[
Yi 6= sgnβTXi

]
≈ 1

n

n∑
i=1

1
[
Yiβ

TXi ∈ (−∞, 0]
]

(105)

where we have ≈ because of the annoying case where we defined sgn0 = −1.
If we replace the indicator function 1 [(−∞, 0]] with a convex function, the resulting

problem will become a convex optimisation problem.
Take the hypothesis class H to not be messy discontinuous functions but a family of

real-valued functions. Then we could always recover a classifier post-composing with sgn.
We shall consider losses of the form `(h(x), y) = φ(yh(x)) where φ : R → [0,∞) is

convex. The associated risk is called the φ-risk.
What shall we choose for φ? Think about what properties are desirable. We are

classifying correctly when h(x) and y have the same sign, and incorrectly classifying
otherwise. This sort of situation is very similar to the setup for the barrier method in IB
Optimisation.

Here are a few choices of φ:

Example 3.10 (Convex surrogate loss functions)

All of the following loss functions are candidates for φ(h):

• Hinge loss max(1− h, 0)

• Exponential loss exp (−)h

• Logistic loss log2(1 + e−h)

(where is 2 chosen so that logistic loss, like our original indicator take the value
1 at h = 0)

Let’s prove that this is a good thing to do: that minimising φ-risk minimises the true
misclassification we want to minimise.
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Definition 3.11. The conditional φ-risk of h is

E [φ(Y h(X)) | X = x] (106)

Working much like we did in (1.11),

E [φ(Y h(X) | X = x] (107)

= E [φ(Y h(X)|X = x, Y = 1] η(x) + E [φ(Y h(X)|X = x, Y = −1] (1− η(x)) (108)

= φ(h(x))η(x) + φ(−h(x))(1− η(x)) (109)

where η(x) = P [Y = 1 | X = x].
For a generic η ∈ [0, 1] and α ∈ R, let

Cη(α) = φ(α)η + φ(−α)(1− η). (110)

Definition 3.12. Say φ : R → [0,∞) is classification calibrated if ∀η ∈ [0, 1] with
η 6= 1/2 (as before this was an annoying side case),

inf
α∈R

Cη(α) < inf
α:α(2η−1)≤0

Cη(α). (111)

This is dense, but it can be unpacked. We’re working with this ‘generic’ η since we
want to just study functions rather than have statistics and conditioning garbage going
on. We call this property ‘calibrated’ because what it is basically saying is that (ignoring
the ambiguous ‘50-50’ case) we incur a greater loss when we guess in contradiction to the
Bayes classifier: this is the interpretation of the sign condition on the second inf.

With these formalities we can turn engineering and rules of thumb (‘which surrogate
loss should I pick?’) into maths:
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Theorem 3.13

Let φ : R→ [0,∞) be convex. Then if φ is differentiable at 0 and φ′(0) < 0, then φ
is classification calibrated.

Proof. Since it’s a composition of φ things, Cη is convex and diffble at 0 with
C ′η(0) = (2η− 1)φ′(0). Now separate into the cases η > 1/2, in which case C ′η(0) < 0.
Then our picture is a ‘skewed parabola’:

and the inf inequality should now be clear: all we need check is that we must get
something smaller on the RHS than all of the LHS of α = 0. But local diffbility
means we must lie below Cη(0) somewhere on the RHS, and by convexity on the
LHS we must always lie above the tangent and hence above Cη(0) too.

The other case is similar.

§3.4 Rademacher Complexity, Again

Recall that our ERM work led to the result (2.25) that involved the Rademacher
complexity Rn(F).

In our setting now, we have F = {(x, y) 7→ φ(yh(x)) | h ∈ H}. We would like to relate
Rn(F) and Rn(H).
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Lemma 3.14 (The contraction lemma)

Suppose there exists some Lipschitz constant L > 0 with

|φ(u)− φ(u′)| ≤ L|u− u′|. (112)

∀u, u′ ∈ [−r, r] where r = suph(x) (sup taken over all hypotheses and all inputs),
since y is always ±1 means these are the only values we’ll ever evaluate φ at.

Then Rn(F) ≤ LRn(H).

Proof. Non-examinable.
The two complexities in the inequality are the complexities of what our surrogate

classification function spits out, and of the actual ±1 classifications.
This is a fairly long symbol pushing proof in the course notes. The important idea

is that we need to turn 1
nεiφ(yih(xi)) terms into L

nεih(xi) terms. Let i = 1 for ease
of notation going forward.

Let A : H× {−1, 1}n−1 be a function that basically allows us to ignore the other
n − 1 terms. Then we can force into the scenario to use the Lipschitz bound as
follows

E
[

sup
h∈H

1

n
ε1φ(y1h(x1)) +A(h, ε2:n) | ε2:n

]
(113)

=
1

2n

 sup
h,g∈H

φ(y1h(x1))− φ(y1g(x1))︸ ︷︷ ︸
≤L|h(x1)−g(x1)|

+nA(h, ε2:n) + nA(g, ε2:n)

 (114)

and then considering what this absolute value means, we can accomplish the goal
of turning 1

nεiφ(yih(xi)) terms into L
nεih(xi) terms, and we take expectation to clear

the conditioning on ε2:n and then repeat for the other n− 1 terms.

Corollary 3.15

Consider the setup of the contraction lemma and suppose r <∞. Suppose that φ is
non-increasing and let M = φ(−r). Then with probability at least 1− δ, the ERM
ĥ of the φ-risk satisfies

Rφ(ĥ)−Rφ(h∗) ≤ 2LRn(H) +M
√

2 log(2/δ)/n (115)

But is this even useful? For H = {x 7→ xTβ}, r and hence M33 AND Rn(H)34 would
not be finite, so we fail spectacularly to produce any meaningful result in two ways.
However, it’s clear things are going wrong since we’re allowing β’s entries to get large.
So, let’s bound those entries.

33because we can make β have large entries, whence h(x) will grow large, and all such φ functions
considered so far grow large as inputs grow large.

34This is true since the contraction lemma bounds by Rn(F), and the definition of Rademacher complexity
(77.) will have unbounded terms.
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§3.5 `2 constraints

Consider H = {x 7→ xTβ : ||β||2 ≤ λ} and X = {x ∈ Rp : ||x||2 ≤ C}, so by construction
we resolve the r =∞ issue;

sup
x∈X ,h∈H

|h(x)| ≤ λC (116)

by Cauchy-Schwarz.

Theorem 3.16 (`2-constrained Rademacher bound)

For x1:n ∈ X we have

R̂(H(x1:n)) =
1

n
E

[
sup
β

n∑
i=1

εix
T
i β

]
≤ λC√

n
(117)

Proof. The summation is essentially a dot product, so actually let’s use Cauchy-
Schwarz once more

≤ λ

n
E

[∥∥∥∥∥
n∑
i=1

εxi

∥∥∥∥∥
2

]
(118)

and now use Jensen on the square root function

≤ λ

n

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2

2

1/2

(119)

and at this point many diagonal terms cancel (assuming we’re really just squaring
and ignoring the fancy norm) since E

[
εix

T
i xjεj

]
= 0. Now the expectation will fall

away:

=
λ

n

(
n∑
i=1

‖xi‖22

)1/2

≤ λC√
n

(120)

Example 3.17 (Support vector machines)

Take φ to be hinge loss and H given by our `2 constrained hypotheses we’ve been
discussing.

Then this is a so-called support vector machine. We have from (3.15) that with
probability at least 1− δ,

Rφ(ĥ)−Rφ(h∗) ≤ 2λC√
n

+ (λC + 1)

√
2 log 2/δ

n
. (121)

However, we only really care about misclassification risk. But
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Theorem 3.18

In fact if h∗ minimises φ risk over H then

Rφ(ĥ)−Rφ(h∗) ≥ R(sgn ◦ ĥ)−R(sgn ◦ h∗) (122)

and further that R(sgn ◦ h∗) is in fact the Bayes risk.

Proof. Generalise from example sheet 2, question 11. I don’t know how to get this
result.

§3.6 Kernel machines (non-examinable)

Consider a very general hypothesis class H = {
∑d

j=1 φj(x)βj | β ∈ Rd, ‖β‖2 ≤ λ} where
d ∈ N ∪ {∞} (!). Surprisingly, the optimization problem is tractable. Consider the
Lagrangian form of the objective

1

n

∑
i

`(h(Xi), Yi) + γ ‖β‖22 (123)

where γ is a Lagrange multiplier and Φ ∈ Rn×d and Φij = φj(Xi). Note that
h(Xi) = (Φβ)i. Introduce the projection matrix P ∈ Rd×d onto the row space (not
column space!) of Φ. Then Φβ = φPβ. Also our norm decreases, since

‖β‖22 = ‖Pβ‖22 + ‖(I − P )β‖22 (124)

which means WLOG we can consider only the β must already lie in that row space.
So β̂ = ΦT α̂ for some α̂ ∈ Rm. Now let k(x, x′) =

∑
j φj(x)φj(x

′) and Kij = k(Xi, Xj)

so that we have a kernel matrix K = ΦΦT . Then α̂ minimises (over α ∈ Rn)

n∑
i=1

`((Kα)i, Yi) + γαTKα. (125)

This is an n-dimensional optimization problem!
The ERM x 7→

∑
j φj(x)β̂j is

∑
j

φj(x)(ΦT α̂)j =
∑
j

φj(x)
n∑
i=1

φj(Xi)α̂i =
∑
i

k(x,Xi)α̂i. (126)

In fact the only place where the dimension d even arises is in computing Φ.
It turns out that for certain families of functions, the kernel K can be computed fast

(without potentially problematic sums over d terms).

33



Arthur Conmy38 (Part II, Lent Term 2021) Mathematics of Machine Learning

Example 3.19 (An example of where the K computation is reasonable)

Suppose X = Rp where p is large. Then if d = p2 + p,

(φ1(x), ..., φd(x)) = (x1, ..., xp, x1x1, x1x2, ..., x1xp, x2x1, ..., x2xp, ..., xpxp) (127)

i.e. the first p components are just the x guys. Then the next p2 components are
all the pairwise products in lexicographic order.

Then in a nice way,

k(x, x′) =
∑
j

xjx
′
j +

∑
j

∑
k

xjxkx
′
jx
′
k =

∑
j

xjx
′
j +

1

2

2

− 1

4
(128)

Recall that our X = {x ∈ Rp : ||x||2 ≤ C}. Since C appears in several of the bounds
(e.g. (3.16)), we may hope that rescaling C may be useful. However, this is not the case:
we will need scale up the size of β (perhaps because otherwise we’re centred so close to 0
we will have very bad stability?) and hence the λC terms that appear in our inequalities
won’t be small.

It turns out that this situation arises in practise when our input data has a large
number of features (equivalently, its dimension as a vector is large) and we expect that a
low proportion of such features are useful. Then (I think!) scaling things won’t fix our
problems as all features will still be weighted in the same way.

§3.7 `1 constraints

Definition 3.20. The `1 norm is

‖u‖1 =
∑
i

|ui| (129)

and the `∞ norm is

‖u‖∞ = max
i
|ui|. (130)

Suppose that X = {x ∈ Rp : ‖x‖∞ ≤ C} and let H = {x 7→ xTβ : ||β||1 ≤ λ}. Then
|xTβ| ≤ Cλ.

Lemma 3.21

For any set A ⊂ Rn, R̂(A) = R̂(convA),

Proof. Example sheet 2. Recall the definition (74) for the Rademacher complexity
of a set.
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Theorem 3.22

{β : ‖β‖1 ≤ λ} = conv (S) (131)

where S =
⋃p
j=1{λej ,−λej}.

Proof. Note that visually this is intuitive;

we’re saying that the interior of this shape is the convex hull of the four vertices.
Let’s check the two cases: if β is such that ‖β‖1 = λ then

β =

p∑
j=1

|βj |sgn(βj)ej =

p∑
j=1

|βj |
λ

(λsgn(βj)ej)︸ ︷︷ ︸
∈S

(132)

and since those coefficients are at most 1, indeed we get the result.
Next, if ‖β‖1 ≤ λ, then rescale two copies of β to have norm λ, and then take a

linear combination of these points and use the prior case (for suitable t1 and t2):

β = t1
λβ

‖β‖1
+ t2

(
−λβ
‖β‖1

)
∈ convS. (133)

Given x1, ..., xn, let L : Rp → Rn be the linear map given by

L(β) = (xT1 β, ..., x
T
nβ)T , (134)

so we can write H(x1:n) = L(convS) = convL(S) from (3.6), and then we can use
(3.21):

R̂(H(x1:n)) = R̂(L(S)) =
λ

n
E

[
p

max
j=1

∣∣∣∣∣
n∑
i=1

εixij

∣∣∣∣∣
]

(135)

where the second equality follows from the fact that we’ve reduced to the set S which
consists of just basis vectors (scaled by ±λ).

Now each ±
∑

i εixij is sub-Gaussian with parameter√√√√ n∑
i=1

x2
ij ≤ C

√
n (136)

by (2.12) and the fact that ‖x‖∞ ≤ C. Now we can apply the max result (2.14) with
the following modification:
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Theorem 3.23 (Adapting the max result for absolute values)

E [maxni=1 |Wi|] = E [max(W1,−W1,W2,−W2, ...,Wn,−Wn)] i.e itself the maximum
of 2n terms.

namely

R̂(H(x1:n)) ≤ λ

n
× C
√
n×

√
2 log |S| = λC√

n

√
2 log(2p). (137)

where, alternatively, we can see the 2p arising as a consequence of our S being defined
with ± each coordinate.
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Example 3.24

Take φ to be hinge loss and let H1 be the hypothesis class H = {x 7→ xTβ : ‖β‖1 ≤
λ1} and X = {−1, 1}p.

Then we can use (115), and the risk gap bound turns out to be O

(
λ1

√
log p
n

)
(gory algebra omitted).

Due to our choice of X , the bound for the corresponding `2 constrained hypothesis

class derived in (3.17) is O
(
λ2

√
p
n

)
.

To compare these, Let h0, identified with β0, minimise Rφ over the set of hypotheses
with unconstrained norm.

Example 3.25

If we assume that

β0 =
1
√
p

(1, 1, ..., 1)T (138)

then for h0 ∈ H1 to hold we need λ1 ≥
√
p.

Hence we can’t make the excess risk smaller than O

(√
p log p
n

)
.

For h0 ∈ H2 to hold we instead need λ2 ≤ 1, in which case the risk bound is

O
(√

p
n

)
.

Example 3.26

If instead

β0 =
1√
s

(1, ..., 1, 0, ..., 0)T (139)

with s non-zero entries, then the risk bounds are O

(√
s log p
n

)
and O

(√
p
n

)
,

following through the same procedure.

Here, the O

(√
s log p
n

)
bound is the important one. This is because the form

of β0, ‘throwing away’ most of the features, but still having very large dimension,
then we actually have a really tight bound. The fact that we don’t have the s
dependence in the `2 means that `1 constraints may be desirable in practise.

Still, if every feature is important, `2 constrained hypothesis classes may
perform better (even though the extra

√
log p seems negligible?).

§3.8 Projection onto convex sets

Note that we’ve alluded to the fact that extremizing convex functions on convex sets is a
computationally tractable problem. However, we haven’t seen this explicitly. If we were
to do gradient descent (from IB Optimization) in such a scenario what if after one step
in the gradient’s direction we were led to a point outside the convex set? We could move
to the closest point in the convex set, doing projective gradient descent. This could fail
though, as for example 2 is closest to 1 in the convex set (0, 1) despite 1 not actually
being in this set. So we may specialise to closed convex sets:
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Theorem 3.27

Let C ⊂ Rd be a closed convex set. Then for each x ∈ Rd, the minimiser πC(x) of
‖x− z‖2 over z ∈ C exists and is unique. We call πC(x) the projection of x on C.

Proof. We can’t immediately use tools from analysis to deduce that we achieve this
value since while we are in a closed set, we’re not necessarily in a bounded set so we
might not have compactness. But actually, points far away will obviously not be
the norm minimiser, so they don’t matter. We can let µ = infz∈C ‖x− z‖2 and then
consider the compact B̄(x, µ+ 1) ∩ C.

For uniqueness, we can use the strict convexity of the function x 7→ ‖x‖22, and
details are filled in on the example sheet.

Theorem 3.28

In the notation of the previous result,

(x− πC(x))T (z − πC(x)) ≤ 0. (140)

Proof. After drawing a picture, this should be intuitive (the line segments meet at
an obtuse angle).

Formally, fix x, and let π = πC(x). If z ∈ C then

(1− t)π + tz ∈ C (141)

for all t ∈ [0, 1] by convexity definition. So

‖x− π‖22 ≤ ‖x− π + t(π − z)‖22 (142)

= ‖x− π‖22 − 2t(x− π)T (z − π) + t2 ‖π − z‖22 . (143)

After rearranging, we can take t→ 0+ and get the result.
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Theorem 3.29

πC is a contraction;

‖πC(x)− πC(z)‖2 ≤ ‖x− z‖2 (144)

for all x, z ∈ Rd.

Proof. Use (3.28) to note that

(x− πC(x))T (πC(z)− πC(x)) ≤ 0 (145)

as well as

(πC(z)− z)T (πC(z)− πC(x)) ≤ 0 (146)

(since πC(z) is its own projection onto the convex set). Adding these implies that

‖πC(x)− πC(z)‖22 ≤ |(x− z)
T (πC(x)− πC(z))| (147)

now apply Cauchy-Schwarz:

≤ ‖x− z‖2 ‖πC(x)− πC(z)‖2 . (148)

and divide through to deduce the result.

§3.9 Subgradients

What if the functions we want to apply gradient descent to functions that aren’t differen-
tiable? For example, hinge loss is not differentiable at x = 1 (3.10).

Let’s now introduce some terminology closely related to the supporting hyperplane
theorem:

Definition 3.30. g ∈ Rd is a subgradient of a convex function f : Rd → R at x ∈ Rd if

f(z)− f(x) ≥ gT (z − x) (149)

for all z ∈ Rd. We call the set of all such g the subgradient, denoted ∂f(x).

Example 3.31

The hinge loss φ(u) = max(0, 1− u) has ∂φ(1) = [−1, 0]:
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Theorem 3.32

If f : Rd → R is convex, then ∂f(x) is non-empty for all x ∈ Rd.

Proof. Non-examinable.
There is intuition that, actually, if our convex function is not differentiable then it

will be easier rather than harder to find a supporting hyperplane; example (3.31)
showed that the sub-differential set was a whole interval rather than just a point.

We shall generalise the idea used in proving Jensen’s inequality from IA Probability,
where we took the sup of the gradients of the chords joining (x, f(x)) to a point on
its left, and the inf of the gradients of the chords joining it to a point on its right.

Let C be f ’s epigraph (3.9). Then take a sequence

w1, w2, ... ∈ Rd+1 \ C (150)

such that wk → (x, f(x)). Then we can use (3.28) to find a vk with ‖vk‖2 = 1
such that

vTk w ≤ vTk wk (151)

for all w ∈ C. For example, a rescaled wk − πC(wk) works. Then the vk lie in a
compact unit ball, so by Bolzano-Weierstrass find a convergent subsequence that
converges to some v = (v1, v2) where v1 ∈ Rd and v2 ∈ R. So

vT1 z + v2y ≤ vT1 x+ v2f(x) (152)

for all (z, y) ∈ C. Setting z = x and growing y to be larger than f(x), we get that
v2 ≤ 0. z being unconstrained (in Rd) means that v2 6= 0 either.

So after dividing through by v2 and rearranging, v2/v1 is in ∂f(x).

Theorem 3.33

f differentiable implies that ∂f(x) = {∇f(x)}.

Proof. Like most of this section, this is intuitively obvious in two dimensions, and
we need to symbol push to generalise to higher dimensions.

Let g ∈ Rd be the subgradient. Then we have, for any z ∈ Rd

∇f(x)T z = lim
t↓0

f(x+ tz)− f(x)

t
≥ gT z (153)

where the inequality follows from subgradient definition.
But taking z = g−∇f(x) we get that ‖∇f(x)− g‖22 ≤ 0 and hence the result.
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Theorem 3.34 (Subgradient calculus)

Let f, f1, f2 : Rd → R be convex. Then

1. ∂(αf)(x) = {αg : g ∈ ∂f(x)} for α > 0.

2. Suppose that h : Rm → R is a composition h = f ◦ g where g is an affine
function possibly from one dimension to another). Then ∂h(x) = AT∂f(Ax+b)

3. ∂(f1 + f2)(x) = {g1 + g2 : g1 ∈ ∂f1(x), g2 ∈ ∂f2(x)}

Proof. 1) and 2) are immediate from writing out definitions.
For 3), we first prove the 1D case. This relies on the following characterisation

Example 3.35 (SVMs continued (see also (3.17)))

Consider

f(β) =
1

n

n∑
i=1

max(1− yixTi β, 0). (154)

Let φ(u) = max(1− u, 0). Then combining (3.31) with u > 1 and u < 1 (where φ
is differentiable, we can use (3.34) to decompose f(β):

Write

hi(β) = max(1− yixTi β) (155)

so ∂hi(β) = {−yixit : t ∈ [0, 1]} when yix
T
i β = 1. From the second two properties

now,

∂f(β) = − 1

n

n∑
i=1

yixiti (156)

where the range of each of the tis is either the singleton sets {−1} or {0} if yix
T
i β 6= 1,

or else the interval [0, 1].

§3.10 Gradient Descent

Suppose we’re solving the optimization problem

min
β∈C

f(β) (157)

where C is closed and convex.
Let β1 ∈ C be an initial guess and k ∈ N be the number of steps, and the sequence of

positive step sizes (ηs)
k−1
s=1 . Then the gradient descent algorithm is the following:

for s = 1, ..., k − 1 do
gs ← ∂f(βs) . Set to any subgradient
zs+1 ← βs − ηsgs
βs+1 ← πC(zs+1)

end for
return β̄ = 1

k

∑k
s=1 βs . An average over all steps, NOT βk
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Remark 3.36. β̄ ∈ C by convexity.

Remark 3.37. The choice to return this average of β values rather than βs may not be too
unlike that choice; it is likely the gradients will decrease in size as we optimize, and hence
the βi will cluster around βs.

aPlease send any corrections and/or feedback to asc70@cam.ac.uk
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Theorem 3.38

Suppose β̂ is a minimiser of a convex function f : Rp → R over a closed convex set
C ⊂ Rp

Suppose we have two boundedness assumptions supβ∈C ‖β‖ ≤ R < ∞ and

supβ∈C supg∈∂f(β) ‖g‖2 ≤ L < ∞. Then if ηs ≡ η = 2R/L
√
k the output β̄ of

the gradient descent algorithm above satisfies

f(β̄)− f(β̂) ≤ 2LR√
k
. (158)

Proof. f(β) ≥ f(βs) + gTs (β − βs) for all β, so

f(βs)− f(β̂) ≤ gTs (βs − β̂) =
1

η
(βs − zs+1)T (βs − β̂) (159)

=
1

2η

(∥∥∥β̂ − βs∥∥∥2

2
+ ‖zs+1 − βs‖22 −

∥∥∥β̂ − zs+1

∥∥∥2

2

)
(160)

(161)

(see (5) for definitions) for the first equality, and the second inequality is a sort
of polarisation identity. Now use projection-is-contraction result (3.29) to note

that
∥∥∥zs+1 − β̂

∥∥∥2

2
≥
∥∥∥πC(zs+1)− πC(β̂)

∥∥∥2

2
=
∥∥∥βs+1 − β̂

∥∥∥2

2
, so now we can apply our

Lipschitz-like subgradient L bound:

f(βs)− f(β̂) ≤ 1

2η

η2 ‖gs‖22︸ ︷︷ ︸
≤L2

+
∥∥∥β̂ − βs∥∥∥2

2
−
∥∥∥β̂ − βs+1

∥∥∥2

2

 (162)

and thus when we sum this quantity, we magically get telescoping:

1

k

k∑
s=1

f(βs)− f(β̂) ≤ ηL2

2
+

∥∥∥β̂ − β1

∥∥∥2

2
−
∥∥∥β̂ − βk+1

∥∥∥2

2

2ηk
(163)

≤ ηL2

2
+

2R2

ηk
(164)

since maxx,y∈C ‖x− y‖22 = 4R2, and we just ignore that minus term.
Now the η = 2R/L

√
k choice in fact is the minimiser, and by Jensen’s,

1

k

∑
s

f(βs) ≤ f(β̄) (165)

and hence the result follows.

Remark 3.39. In general, t∗ = argmint
A
t + t

B satisfies A
t∗ = t∗

B .
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Example 3.40 (SVMs again)

In the notation continued from (3.35) we say the subgradients at some β were of the
form

g =
1

n

n∑
i=1

yixiti (166)

where we had |ti| ≤ 1. So by the triangle inequality we have the subgradient
bound

‖g‖22 ≤ C (167)

where C is the `2 norm bound for the x ∈ X .
So application of the last result gives the bound

f(β̄)− f(β̂) ≤ 2Cλ/
√
k (168)

where λ is the bound on the β in the hypothesis class.
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Example 3.41 (Mandatory COVID Example (!))

Gradient descent is a more general method than a tool for ERM.
We have data on initial cases from Wuhan, and specifically the time B when they

entered Wuhan, the time E when they left Wuhan, and the time when symptoms
began S. Suppose each person was infected with COVID at time T . Then of course
the incubation period S − T is a very important thing we need to calculate! In this
case, we may care to what extent S − T depends on individuals’ factors.

The negative log likelihood (of each probability that the incubation period is n
days) is a convex function, and so we have formally setup applying gradient descent
to a linear model.

Applying this to men and women who contracted COVID and plotting a CDF, we
see that the incubation period for women (in blue) and the men (red) are different;
in fact it is statistically significant that system onset is more likely to be very early
or very late for men; this variance is large. However on average the incubation period
is similar between the genders.

Of course, this is the ‘real world’ so cultural differences could account for this, as
men may be more likely to report symptoms earlier etc.

§3.11 Stochastic Gradient Descent

In general a significant computational bottleneck on applying gradient descent is comput-
ing the (sub)gradient, as for example even in ERM it will be the sum of n terms where n
is large.

Stochastic gradient descent (SGD) can circumvent this issue in the case of min-
imising convex functions of the form

f(β) = E
[
f̃(β;U)

]
(169)

where f̃ : Rp × U → R is such that β 7→ f̃(β;U) is convex for all u ∈ U , and U is a
random variable taking values in U .
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Example 3.42

This setup encompasses ERM: let U be distributed uniformly on {1, ..., n}. Then
the ERM objective function with H = {hβ : β ∈ C} can be written as

1

n

n∑
i=1

`(hβ(xi), yi) = E [`(hβ(xU ), yU )] = E
[
f̃(β;U)

]
(170)

so long as our training data is fixed. The only randomness is in U .

Written in pseudocode, using the same input data as (5) in addition to several i.i.d.
copies U1, ..., Uk−1 of U .

for s = 1, ..., k − 1 do
g̃s ← ∂f(βs;Us) . See remark (3.43)
zs+1 ← βs − ηsg̃s
βs+1 ← πC(zs+1)

end for
return β̄ = 1

k

∑k
s=1 βs . An average over all steps, NOT βs

Remark 3.43. The subgradient ∂f̃ is taken with respect to βs only : we ‘fix’ the Us things
in f̃(β;Us) first.

Remark 3.44. This is pretty much the same as (5) except we now have tildes, and of course
f is different.
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Theorem 3.45

Suppose β̂ is a minimiser of f as above over a closed convex set C ⊂ Rp.
Suppose that we have the same bound supβ∈C ‖β‖2 ≤ R <∞ and same ηs ≡ η =

2R/L
√
k condition as we had before for the not-stochastic case (3.38) and that we

have a slightly different subgradient bound: ∀β ∈ C,

E

[
sup

g̃∈∂f̃(β;U)

‖g̃‖22

]
≤ L2 <∞. (171)

that involves squaring, since this is actually how we used the bound last time, and
we can’t avoid this since E

[
X2
]
6= E [X]2.

Then the output β̄ of the gradient descent algorithm above satisfies an analogous
result to (158) but with expectations:

E
[
f(β̄)− f(β̂)

]
≤ 2LR√

k
. (172)

Proof. This is not the same as (3.38) since we won’t get telescoping due to the
changing Us guys. So as ever, we sneakily use conditional expectation by defining

gs = E [g̃s | βs] . (173)

we now claim that g ∈ ∂f(βs). Write out

f̃(β;Us) ≥ f̃(βs;Us) + g̃Ts (β − βs) (174)

for any β. Then realise that Us is independent of βs, and hence taking expectations
conditional on βs, we get the claim.

Now, use the same (polarisation-like) manipulations from (3.38), where everything
will be surrounded with E [... | βs]. We get that the above is

≤ 1

2η
E
[
η2 ‖g̃s‖22 +

∥∥∥β̂ − βs∥∥∥2

2
−
∥∥∥β̂ − βs+1

∥∥∥2

2
| βs
]

(175)

now use the tower property to bring that expectation down, and then we will get
telescoping:

E

[
1

n

k∑
s=1

f(βs)

]
− f(β̂) ≤ ηL2

2
+

∥∥∥β1 − β̂
∥∥∥2

2

2ηk
≤ 2LR√

k
. (176)

and once plugging in our η choice and using Jensen’s finishes this.

§4 Popular Machine Learning Methods

In this section, we will develop tools to answer questions such as

• How do we choose the λ constraining our e.g. `2-constrained hypothesis class?

• How do we choose the class of hypotheses H over which we search?
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• Besides gradient descent, how else can we improve our selection of our model H?

This is a case where we want to consider multiple different machine learning methods,
i.e. each λ gives rise to a different method.

This leads to cross-validation, which is the biggest take-away from the course.

Definition 4.1. A machine learning method is a function

H : D → RX (177)

where D is the training data, i.e. a machine learning method takes as input the training
data D = (Xi, Yi)

n
i=1 and outputs a hypothesis HD : X → R.

Let H1, ...,Hm be a collection of machine learning methods. Ideally, we would choose
the ‘best’ method Hj , where

E
[
`(Hj

D(X), Y ) | D
]

(178)

where this expectation is taken over essentially a ‘new’ independent sample from X ×Y .
This is intractable generally since we only ‘see’ D (i.e. see everything we’ve done on
ERM!).

An easier approach is to try to minimise the expectation of (178):

E
[
E
[
`(Hj

D(X), Y ) | D
]]
. (179)

Definition 4.2. Cross-validation is the process of splitting the dataset D into v folds
A1, ..., Av that partition D.

Define D−k = D \Ak, and Hj
−k = Hj

D−k.

Definition 4.3. The cross-validation error CV is defined as

CV(j) =
1

n

v∑
k=1

∑
i∈Ak

`(Hj
−k(Xi), Yi) (180)

Remark 4.4. (4.3) is a (usually upwards) biased estimate of (179), because we have a factor
of 1

n and n− |Ak| < n.

Remark 4.5. v = n corresponds to leave-one-out-cross-validation which gives the least
bias, but can have high variance as the summand in (4.3) will tend to be positively correlated
(Why is this exclusive to v = n, and why does the implication follow?).

§4.1 Adaboost

Given a base set B of ‘base’ classifiers h : X → {−1,+1} with the property

h ∈ B =⇒ −h ∈ B, (181)

consider the class

H =

{
M∑
m=1

βmhm : βm ∈ R, hm ∈ B, 1 ≤ m ≤M

}
(182)
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M is called the tuning parameter which corresponds to the number of steps we take
with AdaBoost.

Adaboost can be motivated as a greedy ERM over H using exponential loss.
Setting f̂0 to be the zero function x 7→ 0 as our ‘initial guess’ at a hypothesis, adaboost

performs the following update for each step 1 ≤ m ≤M :

(β̂m, ĥm) = argmin
β≥0,h∈B

1

n

n∑
i=1

exp
(
−Yi{f̂m−1(Xi) + βh(Xi)}

)
(183)

f̂m = f̂m−1 + β̂mĥm (184)

where property (181) allows us to only need consider β ≥ 0.
The final classification is performed according to sgn ◦ f̂M .

Remark 4.6. As mentioned, this is a greedy algorithm, it is quite unlike the previous ERM
procedures that generally guarentee some sort of minimization.

To make this process implementable, we can separate the process of the h and β
updates as follows:

w
(m)
i =

1

n
exp

(
−Yif̂m−1(Xi)

)
. (185)

Then the expression we take an argmin over in (184) is, decomposing,

eβ
n∑
i=1

w
(m)
i 1 [h(Xi) = Yi] + e−β

n∑
i=1

w
(m)
i 1 [h(Xi) 6= Yi] (186)

(eβ − e−β)
n∑
i=1

w
(m)
i 1 [h(Xi) 6= Yi] + e−β

n∑
i=1

w
(m)
i . (187)

Now this motivates us to define a ‘weighted error’

errm(h) =

∑n
i=1w

(m)
i 1 [h(Xi) 6= Yi]∑n
i=1w

(m)
i

. (188)

which is defined assuming that no h ∈ β perfectly classifies the data. This setup allows
us to rewrite the h update in (184) as

ĥm = argmin
h∈B

errm(h) (189)

Note that this reduction of the minimisation problem relies centrally on the eβ − e−β
term in (187) being positive, which is fine since we have property (181).

Now we can just consider this new ĥm as fixed, and differentiating (187) with respect
to β in order to get the expression for the updated β as follows:

β̂m =
1

2
log

(
1− errm(ĥm)

errm(ĥm)

)
. (190)
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Example 4.7 (Adaboost applied to decision stumps)

Let X = Rp and consider the class of decision stumps

B = {ha,j,1(x) = sgn(xj − a), ha,j,2(x) = sgn(a− xj) : a ∈ R, 1 ≤ j ≤ p}. (191)

i.e. the set of basic classifiers that pick a coordinate, and a parameter, and classify
based on what side of that parameter we fall.

To perform adaboost, finding the optimal weights w1, ..., wn > 0 (omitting
superscript m), for each 1 ≤ j ≤ p, first sort {Xij}ni=1 assuming distinctness:
X(1)j < ... < X(n)j .

Now fixing j, WLOG assume that X(i)j = Xij = xi. Now

err(hxk+1,j,1)− err(hxk,j,1) =
Yk+1wk+1∑

l wl
. (192)

by referring to (188), and noting that having sorted anything, moving our parameter
just slightly to the right will only change one classification (and increase or decrease
the error, depending on the sign of Yi).

So to pick the optimal ha,j,1 (over variable a), we need consider a bunch of
cumulative sums, and something similar happens with ha,j,2. We can sort the X
before performing adaboost, and hence after preprocessing the complexity of the
algorithm is O(np).

Remark 4.8. The original H is uncountable, but it turns out the only a values that we care
about (as the resulting classifier will behave the same on the training data) are the values
inbetween coordinates Xij in the finite input D which consists of only np values total.

This same strategy of taking a simple set of hypotheses and then ‘boosting’ them into
a better hypothesis is more general than adaboost.

§4.2 Gradient Boosting

This technique is used widely e.g. in most winning entries to kaggle competitions.
It can be motivated by the following thought experiment: consider applying gradient

descent directly in order to minimise the risk R(h) = E [`(h(X), Y )] (over all function h).
This would involve the following steps:

• Have an initial guess f0 : X → R.

• For each m = 1, ...,M compute

gm(x) =
∂E [`(θ, Y )|X = x]

∂θ

∣∣∣∣
fm−1(x)

(193)

= E

[
∂`(θ, Y )

∂θ

∣∣∣∣
fm−1(x)

∣∣∣∣X = x

]
(194)

where we make suitable regularity conditions to exchange ∂ and E [...].

• Update fm = fm−1 − ηgm where η > 0 is a small step length.
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But this is, as ever in the course, idealized since the expectation is over the distribution
of Y .

Now recall from (1.7) that (194) (thought of as a function of x) is the minimiser of

E

(∂`(θ, Y )

∂θ

∣∣∣∣
fm−1(X)

− f(X)

)2
 (195)

over all functions f : X → R. This is the motivation for gradient boosting where we
empirically minimise (195) using a regression approach.

Definition 4.9. Let H be a base regression method that takes as its argument training
data D and outputs a hypothesis HD : X → R. ` the loss may be any type of loss
(including a convex surrogate).

Then gradient boosting takes as input the data X1:n and Y1:n as well as η > 0, H
and M and

µ̂ = argmin
µ∈R

1

n

n∑
i=1

`(µ, Yi). (196)

We set f0(x) = µ̂, i.e we initially guess the best constant function (with respect to the
data, and the loss function).

The idea of the algorithm is to use our base regression procedure itself to generate a
‘gradient hypothesis’ ĝ(m) at each stage of the algorithm that is intended to be a close
approximation of f in (195). This will therefore be an empirical approximation of the
‘true’ gradient (194).

for m = 1, ...,M do
Wi ← ∂

∂θ `(θ, Yi) |θ=f̂m−1(Xi)
. One gradient per item of training data.

ĝm ← H(X1:n,W1:n) . i.e. apply our method H.

f̂m ← f̂m−1 − ηĝm
end for

return f̂M . Possibly composed with sgn in the classification setting.

§4.3 Decision Trees

Gradient boosting is particularly effective at optimising ‘decision tree methods’ that are
generalisations of the decision tree stumps (4.7).

Firstly let’s get an example of what a decision tree is:
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Example 4.10 (Decision tree by example, not formality)

Suppose we are in a 0− 1 classification setting and wish to recursively draw decision
boundaries based on the decision boundaries that maximise the reduction in least
squares error. Restricting to horizontal and vertical lines only, we get a plot that
has a bunch of nested regions:

It is computationally efficient to compute such boundaries due to the reduction in
size of each region with each iteration.

The method is called a decision tree procedure since there are several ways to
visualize our resultant classifier, and one of them is a decision tree (think ’if-else’
statement in code), at the bottom left:

Formally,

Definition 4.11. Given data (X1, Y1), ..., (Xn, Yn), a decision tree performs the fol-
lowing:

1. Take as input the maximum number of regions J . Initialize R̂ = {Rp}.

2. For each region R ∈ R̂ such that I = {i : Xi ∈ R} has |I| > 1 perform the following:

• For each j = 1, ..., p let Sj be the set of midpoints between adjacent {Xij}i∈I
(i.e specialise to one coordinate then sort points in R by this coordinate and
extract the midpoints).
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• Find the predictor ĵR and the split point ŝR to minimise the residual sum of
squares drop

min
c1∈R

∑
i∈I:Xij≤s

(Yi − c1)2 + min
c2∈R

∑
i∈I:Xij>s

(Yi − c2)2

︸ ︷︷ ︸
The residual sum of squares when we split at s

−min
c∈R

∑
i∈I

(Yi − c)2

︸ ︷︷ ︸
RSS before the split

. (197)

where the last, pre-split term does not affect the optimization but is included
for our analysis to come.

3. Let R̂ be the region yielding the lowest value of the drop in RSS, and update our
partition R̂ accordingly (unenlightening symbols omitted).

4. Repeat steps 2 and 3 until |R̂| = J .

5. Writing R̂ = {R̂1, ..., R̂J}, let Îj = {i : Xi ∈ R̂j} and

γ̂j =
1

|Îj |

∑
i∈Îj

Yi. (198)

i.e. a weighted average of the results of things in region.

6. Return the classifier T̂ : Rp → R that classifies based on the plurality of the region
that data points fall into:

T̂ (x) =
J∑
j=1

γ̂j1
[
x ∈ R̂j

]
. (199)

§4.4 Random Forests

Consider the regression setting (i.e where Yi ∈ R) with squared error loss. Let T̂D be a

decision tree trained on iid data D = (Xi, Yi)
n
i=1. Let T̄ (x) = E

[
T̂D(x)

]
.

Remark 4.12. Here, we consider the training data to be random, hence the expectation
with the argument x.

Let (X,Y ) be independent of D and distributed like the training data. Recall the
expectation decomposition (1.7), then we can compute

E
[
R(T̂D)

]
= E

[
(Y − T̂D(x))2

]
(200)

= E

(Y − E [Y | X,D]︸ ︷︷ ︸
E[Y |X]

)2

+ E
[
(E [Y |X]− T̂D(X))2

]
(201)

Use the tower property, and fudge in T̄ (X) noting that T̄ = E
[
T̂D

]
(so cross-terms

disappear) to write
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E
[
E
[
(Y − E [Y | X])2

]
|X
]

+ E
[(
T̂D − E

[
T̂D

])2
]

+ E
[
(T̄ − E [Y |X])2

]
(202)

both these first two terms are now conditional variances:

= E [Var(Y |X)]︸ ︷︷ ︸
‘Irreducible error’, tree independent

+ E
[
Var(T̂D|X)

]
︸ ︷︷ ︸
Variance of the tree

+E
[
(T̄ − E [Y |X])2

]︸ ︷︷ ︸
Squared bias

. (203)

As we increase the number of regions, while the squared bias will reduce, However,
the variance of the tree will tend to increase due the γ coefficients in the decision tree
construction being far more variable.

Definition 4.13. A random forest procedure samples from the data D with replacement
in order to form datasets D∗1, ..., D

∗
B. It then fits trees T̂ (b) to the data D∗b , but when

searching for the best variable to split upon, restrict ourselves to a random sample of
mtry of the p predictors.

Then we average out the trees: we output frf = 1
B

∑B
b=1 T̂

(b).

What is the reason for this sampling procedure? For one thing, it may reduce the
computational complexity. It also makes the T̂ (b) more independent.

If for b1 6= b2 and some x ∈ Rp we have that Corr(T̂ (b1)(x), T̂ (b2)(x)) = ρ ≥ 0 then
when can directly compute the forest variance via the formula,

Var(frf) =

(
ρ+

1− ρ
B

)
Var(T̂ (1)(x)) (204)

so we can’t expect increasing B alone decreasing the forest variance; we also need
decrease ρ. This can be done by choosing a small mtry since this will increase likelihood
that the individual forests come from different classifiers. But then squared bias would
(probably...) increase.

§4.5 Neural Networks

This will be the last machine learning technique in the course, and we focus only on
feed-forward neural networks, the state-of-the-art for many problems.

Neural networks for classification problems are based around a class of hypotheses H,
that is rich in that it is consists of many function compositions.

Definition 4.14. A neural network is based around a set of hypotheses h(x) defined
by

h(x) = A(d) ◦ g ◦A(d−1) ◦ g ◦ ... ◦A(1)(x) (205)

where d is the depth of the neural network, A(k) : Rmk → Rmk+1 is an affine function
A(v) = β(k)v + µ(k), and g : Rm → Rm is a non-linear activation function that acts
component-wise by a function ψ(u). Some popular choices include ReLU(x) = max(x, 0)
and σ(x) = 1/(1 + e−u).
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Remark 4.15. If g was not non-linear, the whole function would collapse into a single affine
function!

Let’s set up some definitions in order to show how we can apply SGD to such hypotheses:

Definition 4.16. h(0) = x is the input layer to the neural network, x(k) := A(k)(h(k−1)),
the hidden layers of the network are given by h(k) = g(x(k)) for k < d and the output
(layer) is x(d) = h(x).

Further terminology is that the vector input to h is called the ‘input layer’, the output
g ◦A(i) ◦ g ◦ ... ◦A(1)(x) at each stage is called the ‘hidden layer’ output, and the final
output is called the output layer. The terminology is used as each component can be
thought of as a nodes in a graph, with edges all edges between nodes in adjacent layers.

The process of training a neural network is the process of applying SGD to the
parameters (β, µ) of all the affine functions, with surrogate loss φ. This turns out to be
computationally tractable:

§4.5.1 Back-Propagation

We let z = φ(yh(x)) = φ(yx(d)) be our loss. Then initially compute

∂z

∂x(d)
= yφ′(yx(d)). (206)

Recall that our output x(d) is a function of the last hidden layer which is a simple
affine function, so

∂z

∂β
(d)
1k

=
∂z

∂x(d)
h

(d−1)
k , (207)

∂z

∂µ(d)
=

∂z

∂x(d)
. (208)

by differentiating the affine function expression A = βx+ µ.
Now we can propagate further backwards by writing

∂z

∂h
(d−1)
j

=
∂z

∂x(d)
β

(d)
1j (209)

and then passing through the affine function

∂z

∂x
(d−1)
j

=
∂z

∂jd−1
j

ψ′(x
(d−1)
j ). (210)

And now we’re back to a ∂z
∂x expression as in (206), so we can do this all again to get

the gradients with respect to all the parameters further back in the network.

Remark 4.17. A much lighter introduction (which is slower paced!) can be found at
http://neuralnetworksanddeeplearning.com. Thie author implements a neural network
in basic python, while (importantly for mathmos!) explaining the choices made in both the
design of the neural net architecture, and implementation choices.
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