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These brief notes are based on lectures given (virtually) by Professor I.
Smith in Lent term 2021. Many thanks to Artem, Kene, Daniel and David
(and more) for many helpful discussions and clarifications. Credit is also due
to Evan Chen for the style file for these notes1.

I am trying to continually reorder sections, add in more discussions and
cover all the course. I hope by the end of the exams this will seem more
complete.
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§1 Notation

I think most notation is used in the course, except perhaps the following

• ⊆◦: open set in.

∗Please send any corrections and/or feedback to asc70@cam.ac.uk.
1Available here: https://github.com/vEnhance/dotfiles/blob/master/texmf/tex/latex/evan/

evan.sty.
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• 7→: always read as ‘maps to’.

§2 Geometry from the abstract lens

This is (mostly!) a pure course, so we build up our object of study from definitions, and
then eventually get to prove interesting things about those object (think IA Groups and
taking these weird axioms, and following where they take us through a bunch of results).
The following definition is the most important and foundational in this course.

Definition 2.1 (Surface). A surface is a topological space Σ such that every p ∈ Σ has
a neigbourhood homeomorphic to R2.

In this course, we also impose the conditions that Σ is Hausdorff and second countable.

Remark 2.2. Generalising the above to homeomorphism to Rn gives rise to a manifold, a
more general object.

Remark 2.3. Forgotten what Hausdorff means again? Never forget again: a topological
space X is Hausdorff iff we can ‘house off’ every pair of points: that is to say ∀p 6= q, there
exist disjoint open sets U, V ⊂ X such that p ∈ U and q ∈ V .

(2.1) is a local condition on our topological space. We will want to work with more
global properties of our surfaces, so we define atlases.

Definition 2.4. An atlas for a surface Σ is a set of open sets called charts {Ui} (indexed
by some index set I, say), such that ⋃

i∈I
Ui = Σ. (1)

Usually, we associate with each Ui a homeomorphism φi : Ui → Vi ⊂ R2 and call
(Ui, φi) a chart.

What’s the point of this definition? We know that all p ∈ Σ have local ngbds
homeomorphic to R2, so don’t we essentially already have a bunch of open sets that cover
our surface? The elegance of atlases is that they allow us to describe surfaces we do not
have a clean parametrisation for with a single atlas.
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Example 2.5 (Single charts do not suffice)

In IA Vector Calculus, we commonly parametrised S2 by

σ(u, v) =

cosu sin v
sinu sin v

cos v

 (2)

where u ∈ U := [0, 2π] and v ∈ V := [0, π]. But we can’t just choose U × V
as our ngbd to all points on S2; to flesh this point out: if we tried to make a
homeomorphism φ : S2 → U × V we would fail, since v = 0 (or π) leads to the u
coordinate being arbitrary and injectivity breaking down a.

Atlasses fix this problem in a clean way. For example can just pick U = (0, 2π)
and V = (0, π), which then only misses out the north and south poles, and half a
great circle that joins them. Another open set that’s a rotation of U × V will then
allow us to cover all S2 in two charts.
ain addition, there are issues with U not being open

How might we define a global topology with respect to a bunch of possibly very different
charts?
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Proposition 2.6 (Global Topology on Surfaces)

Suppose we have a countable collection (Uα, φα), where each Uα is a set, and

φα : Uα → Vα ⊆◦ R (3)

are bijections such that ∀α, β,

φα(Uα ∩ Uβ) ⊆◦ Vα. (4)

Define

Σ =
⋃
α

Uα. (5)

Then

1. There is a topology on Σ with U ⊆ Σ open iff ∀α,

φα(U ∩ Uβ) ⊆◦ Vα. (6)

2. If we suppose that in addition to the above, ∀α, β, the transition map

φβφ
−1
α (7)

is a homeomorphism, and that, as a technical condition to enforce the Hausdorff
property,

{(x, x) : x ∈ Uα ∩ Uβ} ⊆ Uα × Uβ (8)

is closed in Uα × Uβ, then with this topology Σ is a topological surface.

This is a long result, so first some discussion.
The first part is clear, since we need to check the three topology axioms and they are

all immediate.
The much tricker part is checking that we get a surface given the transition map

condition.
What we want to do is prove that the very suggestive-looking (Uα, φα) are actually

charts for the topological surface. Then this will be enough to deduce that Σ is a
topological surface (provided that it’s Hausdorff and second countable), since ∀p ∈ Σ we
can find some chart φ : U → V that p ∈ U and then localise to a small open disk around
f(p) ∈ V which will be homeomorphic to some open set in U (by the continuity of φ)
and this will exactly be our local neighbourhood of p that’s homeomorphic to R2.

To do this, we need verify the following:
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Lemma 2.7

Let V ⊆◦ Vα. Then φ−1
α (V ) is open in Σ.

Proof. To check this we need verify that φβ(Uβ ∩ φ−1
α (V )) ⊆◦ Vβ (by definition of

this topology).
But this is

φβ(Uβ) ∩ φβ(φ−1
α (V )) (9)

which is the intersection of two open sets, since that transition map is a homeo-
morphism.

From here, that diagonal condition should remind you of the following Analysis and
Topology example sheet question.

Example 2.8 (Analysis and Topology Example Sheet 2, Question 8)

The diagonal of a set Y is the set ∆Y = {(x, y) ∈ Y × Y : x = y}. Show that a
topological space Y is Hausdorff if and only if ∆Y is closed in Y × Y .

In this case, our condition is subtley different, and in fact we can directly exhibit
disjoint, open U 3 p, V 3 q by splitting into the two cases of p and q lying in a common
Uα (easy) and lying in Uα and Uβ and using the closed condition; details skipped5.

§2.1 Surfaces in R3

In the following subsection, we specialise to surfaces that are subspaces of R3. Note that
note this is not possible for all surfaces; the classic example is the Klein bottle, which
self-intersects when we try and embed it into R3, and hence (considering the subspace
topology on R3) at these points of intersection points do not have local neighbourhoods
homeomorphic to R3.

Definition 2.9. Smooth means infinitely differentiable.

Definition 2.10. A diffeomorphism is a homeomorphism that is smooth, and has a
smooth inverse.

Definition 2.11 (Transition map). The transition maps between charts are intuitively
defined (from a restricted domain that’s a subset of Vα, Ṽ say)

φβ ◦ φ−1
α : Ṽ → Vβ (10)

this maps between open sets in R2, and has the explicit, suitably restricted domain

Ṽ = φα(Uα ∩ Uβ) (11)

(the notation gets dense when discussing transition maps, but all we’re doing is always
making sure things are well-defined).

Definition 2.12 (Smooth Surface). A smooth surface in R3 is a surface Σ given as the
union of several Ui such that each transition map is a diffeomorphism.

5hint: take the complement of that diagonal set that’s defined in the condition.
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Remark 2.13. Note that infinite differentiability is a strong condition; we’re trying to
set things up so we can prove nice things about shapes in space, worrying about wild real
analytic pathologies as little as we possibly can.

To study smooth surfaces in R3, actually we can specialise to certain restricted local
parametrisations called allowable parametrisations:

Theorem 2.14

The following are equivalent:

• Σ is a smooth surface in R3.

• Σ is locally the graph of a smooth function over one of the coordinate planes.

• Σ is locally cut out by the vanishing set of a smooth function with nonzero
derivative. That is, ∀p ∈ Σ, there is an open U ∈ R3 such that Σ∩U = f−1(0)
where f : U → R is smooth and Df |p 6= 0.

• Σ is locally the image of an allowable parametrisation, i.e. some Σ : V → Σ
where V ⊂ R2 is open and Dσ has full rank throughout V .

Proof. This is a particularly heavy part of the course, so I’ll only discuss the
important ideas here.

Note that the third statement concerns inverting f , and the fourth statement
involves a full rank statement, which if we were working over maps from Rn to Rn.
Both of these statements should strongly suggest we should use the Inverse Function
Theorem from analysis. However, our maps are those of the form Rm → Rn where
m 6= n, this is harder. The submersion theorem and the implicit function theorem
are the corollaries of the inverse function theorem needed to show these implications.

aPlease send any corrections and/or feedback to asc70@cam.ac.uk.

§2.2 Some tools to help us out

Theorem 2.15 (Inverse Function Theorem)

Let f : U → Rn be a C1 function on U , where U ⊆◦ Rn. Then there are open
subsets V,W ∈ Rn so that f |V : V → W is a bijection, and f �−1

V is differentiable
with derivative

(Df |f−1(x))
−1. (12)

Proof. Ultimate result of IB Analysis and Topology.

Remark 2.16. The derivative expression can be memorised since we can write

f(f−1(x)) = x (13)

and differentiate, using the chain rule.

To begin working with different dimensions,
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Theorem 2.17 (Submersion Theorem)

Let f : U → V where U ∈ Rn and V ∈ Rm are open be locally differentiable at p and
have surjective derivative. Then there exist coordinate systems (i.e diffeomorphisms
with open sets U ′ and V ′) such that in these coordinate systems, f is the submersiona

F (x1, ..., xn) = (x1, ..., xm). (14)

Proof. As with many analysis results, make convenience of life assumptions that
p = 0 and it is the first n columns of Df that are linearly independent.

Now we basically force ourselves into the equal dimension setting: define

Φ(x1, ..., xn) = (f(x1, ..., xn), xm+1, ..., xn) (15)

which, when thought about for a while, is a locally differentiable function around
0 with derivative invertible (we can explicitly write out the derivative matrix). So
applying inverse function theorem, Φ−1 exists. Now after thinking for a while, in
fact

f ◦ Φ−1 (16)

is exactly the submersion requested.

a(ignore this waffle) the italics here are because I can’t resist saying submersion as if I’m a death
metal singer. Maybe I need to stop listening to Code Orange while revising.

Theorem 2.18 (Implicit Function Theorem)

If we have the same setup as in the submersion theorem, but n = n′ +m and we
break vectors in Rn into their n′-dimensional component x and their m-dimensional
component y, and the last m columns of Df are invertible locally then there exists
g such that

f(x, y) = 0⇐⇒ g(x) = y (17)

Proof. We essentially already have the convenience of life assumption, meaning
that applying submersion, in some coordinates f(x, y) = f̃(y), where the form of f̃
depends on x. This means that f(x, y) = 0 is equivalent to y = g(x), i.e given some
x, locally evaluate the invertible f̃ and check which y vector is the zero vector in
the changed coordinates.

Remark 2.19. As far as I can tell, we are mostly using these results as tools to do geometry,
not as analysis facts in their own right. For that reason, the proofs have been brief, and
indeed we are not careful in specifying ‘smooth’ versus ‘C1’ and so forth. From the lecturers
errata page:

When dealing with topological surfaces, all maps are continuous. When dealing
with smooth surfaces, all maps are smooth, even if I sometimes forget to say so
explicitly.

We will later similarly see such lax checking that conditions hold when we use Picard-
Lindelof to deduce curve and geodesic existence.
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§3 Getting our hands on some R3 surfaces

Continuing to work with smooth surfaces in R3, we can now consider how to measure
familiar quantities such as length, area, angle given our σ parametrization. A central
tool is the first fundamental form ...

The first fundamental form gives a notion of dot product (equivalently, a bilinear form)
of our parametrisation σ(u, v). Specifically, given some allowable σ, the bilinear form on
the tangent plane to Σ at p is(

E F
F G

)
=

(
〈σu, σu〉 〈σu, σv〉
〈σu, σv〉 〈σv, σv〉

)
. (18)

We more commonly write

Edx2 + 2Fdxdy +Gdy2. (19)

We’ve seen similar uses of differentials forms (i.e isolated dx etc. terms) before in, for
example, IA Vector Calculus. Where do they come from?

§3.1 Differential Forms

This section is largely pulled from [1], however hopefully synthesised for an audience who
has finished IB Analysis and Topology.

Recall from that course the following results:

Theorem 3.1 (Projecting derivatives)

Suppose f : Rm → Rn has components fi : Rm → R for 1 ≤ i ≤ n. The the following
are equivalent

• f is differentiable at p.

• Each fi is differentiable at p,

Proof. Good exercise (I think).

This is important since it basically means that to study differentiability of functions
f : Rm → Rn, we can essentially WLOG let n = 1.

8
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Theorem 3.2 (Computing derivatives in n dimensions.)

Suppose that U ⊆◦ Rm and f : U → R has continuous partial derivatives at p ∈ U .
Then f is differentiable at p, with derivative

Df(p)(h) =
∂f

∂x1
h1 + · · ·+ ∂f

∂xm
hm. (20)

Proof. Decompose as a telescoping sum

f(x1 + h1, · · · , xm + hm)− f(x1, · · · , xm) (21)

= f(x1 + h1, · · · , xm + hm)− f(x1 + h1, · · · , xm−1 + hm−1, xm) (22)

+f(x1 + h1, · · · , xm−1 + hm−1, xm)− f(x1 + h1, · · · , xm−1, xm) (23)

+ · · · (24)

+f(x1 + h1, x2, · · · , xm)− f(x1, · · · , xm). (25)

And now by an ‘m-ε’ proof (i.e m applications of the triangle inequality), we use
continuity of the m partial derivatives to deduce the desired derivative expression.

However, actually doing this is somewhat more subtle than it may seem at first
(for example, to me!), since the limit ||h||2 → 0 need be independent of the relative
‘speeds’ that each h component approach 0.

We illustrate how we do this in the case m = 2; the argument is easily generalised
to the higher order cases.

Example 3.3

WLOG show differentiability at 0.
The quantity Q that we need show approaches 0 as h1 → 0 and h2 → 0 is

Q =
f(h1, h2)− f(0, 0)− h1

∂f
∂x |0 − h2

∂f
∂y |0√

h2
1 + h2

2

(26)

Now by the triangle inequality, and that
√
h2

1 + h2
2 ≥ |h1|, |h2|,

|Q| ≤

∣∣∣∣∣f(h1, h2)− f(0, h2)− h1
∂f
∂x |0

h1

∣∣∣∣∣+

∣∣∣∣∣f(0, h2)− f(0, 0)− h2
∂f
∂y |0

h2

∣∣∣∣∣ (27)

as h2 → 0, clearly the latter term approaches 0 (this is easy due to the
remark (??) made below). However, for the first term the ‘different speeds’ issue
immediately arises. To remedy this, what we can do is localise to an open set
U ⊆◦ R2 around 0 so that when (x, y) ∈ U ,∣∣∣∣∂f∂x |(x,y) −

∂f

∂x
|0
∣∣∣∣ < ε. (28)

Then this means that if (h1, h2) ∈ U ,

f(h1, h2)− f(0, h2)

h1
(29)

differs from ∂f
∂x |0 by at most ε, since otherwise by the mean value theorem,

somwhere in U we would have ∂f
∂x differing by more than ε from ∂f

∂x |0.

9
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We’re doing geometry here, so everything is smooth and has nice derivative expressions
like above (see (2.19)).

Note that we can rewrite (20) as

Df(p)(h) =

(
∂f

∂x1
e∗1 + · · ·+ ∂f

∂xm
e∗m

)
(h) (30)

where e∗1, · · · , e∗m is the dual basis to e1, · · · , em, since the derivative result is saying
exactly the derivative decomposes into this projection onto all the coordinate directions.

This is the motivation for the df and dx notation. Specifically, in the case n = 1,
define dx = e∗1. Then

df = Df =
∂f

∂x
dx (31)

So for example when f = sinx, df = cosxdx and we give in to the temptation and
write df

dx = cosx.
What does dx2 mean? This is simply the bilinear form that maps a pair of R2 vectors

to the product of the projection onto the x coordinates. This motivates the notation for
the fundamental forms.

§3.2 The Second Fundamental Form

The second fundamental form is another bilinear form that is motivated by the divergence
of Σ from its tangent space locally near a point: by Taylor’s, for h, j small,

σ(u+ h, v + j) ≈ σ(u, v) + hσu + jσv +
1

2
(σuuh

2 + 2σuvhj + σvvj
2) (32)

to second order. Hence the divergence from the tangent plane TpΣ locally at p is (to
second order)

[σ(u+ h, v + j)− σ(u, v)].n =
1

2

(
h j

)(n.σuu n.σuv
n.σuv n.σvv

)(
h
j

)
(33)

Definition 3.4. The second fundamental form II is defined as the bilinear form appearing
above;

II =

(
L M
M N

)
=

(
n.σuu n.σuv
n.σuv n.σvv

)
. (34)

Remark 3.5. This definition of the second fundamental form is only well motivated for
II(v, v). What’s the interpretation for II(v, w)?

Theorem 3.6 (Alternative characterisation of SFF)

SFF = −(Dn)TDσ (35)

Note that n.σu = n.σv = 0 so we get this from partially differentiating these with
respect to u and v.

10
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Since we have an allowable parametrisation everywhere on Σ, we can define a unit
normal

σu × σv
||σu × σv||

(36)

everywhere on Σ.
We define the Gauss map as exactly this map, N : Σ→ S2. It is an intuitive result

that this is independent of paramterisation.
We will now need to differentiate the Gauss map. Doing this directly leads to a linear

map from R3 to R3. However, since the Gauss map has both domain and range restricted
to smooth surfaces which ‘feel’ like 2D objects, we might hope that we can make sense of
such a ‘derivative’, with restricted domain and range, in terms of linear maps between
copies of R2.

In what follows I use the notation DN rather than DN , to emphasise the subtlety of
the switching between the R2 and R3 viewpoints.

Define DN by

DN : TpΣ→ TN(p)S
2 (37)

such that Dσ(v) 7→ D(N ◦ σ)(v).
This is a linear map since D(N ◦ σ) = DN ◦Dσ.

Remark 3.7. This is essentially restricting the domain of the Gauss map to a 2D surface.

Also consider n as the map U → S2 (defined locally on charts) such that

n = N ◦ σ. (38)

Now since n.n = 1 always, in fact nu and nv are perpendicular to n, so Dn|p (as a
map) always sends things to the tangent plane at n(p) on S2, which of course coincides
with the tangent plane at p on Σ.

So, having begun with the Gauss map between (subsets of) R3, we now have a map
between (subsets of) R2. Also note that

Dn|p = DN |σ(p) ◦Dσ|p (39)

by the chain rule.

Definition 3.8. The shape operator S is the linear map

S : TpΣ→ TpΣ (40)

defined by

Dσ(v) 7→ −DNDσ(v). (41)

This is linear since it inherits linearity from DN .

Considered as a map from the tangent space (in the σ parametrization) at p to itself,
we have, in the evaluation of the first fundamental form below Sv = −DN |σ(p)Dσ|pv =
−Dn|pv so11

11I am not entirely happy with my symbol pushing here. To elaborate, while interpreting I(v, w) as
(Dσv)TDσw, i.e v and w contain coordinates (two numbers in R) that Dσ turn into the familiar first
fundamental form expression seems to work, but I feel the careful work we did to ensure get a 2D
endomorphism is sort of lost when we do derivations like this.

11
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Theorem 3.9

I(Sv, w) = II(v, w) (42)

Follows immediately from the chain rule and characterisations of I and II given:

I(Sv, w) = −vT (Dσ)T (DN)T (Dσ)w = −vT (Dn)TDσw = II(v, w). (43)

We can now use these tools to build further upon the abstract surface formalisms
began earlier.

Definition 3.10 (Riemannian metrics on R2 subsets.). We can define a Riemannian
metric on a subset V ⊂ R2 by a smooth map

z 7→
(
E(z) F (z)
F (z) G(z)

)
(44)

where the map is to positive definite bilinear forms (since a map to matrices would be
too general).

The next definition is nothing surprising:

Definition 3.11 (Riemmanian metrics on abstract smooth surfaces). A Riemannian
metric on a surface given as an atlas is a map defined for each such atlas as in (3.10)
with the following compatibility condition on the transition maps fαβ := φβ ◦ φ−1

α : we
unsurprisingly want the first fundamental forms to agree, which amounts to needing the
following to hold, and so pretending for a moment we have embedded surfaces in R3 with
associated parametrizations σα and σβ, we would want

(Dσα)TDσα = (D(σβ ◦ f))TD(σβ ◦ f) (45)

but of course we’re being abstract, so actually we expand via the chain rule and insist(
E F
F G

)
α

= (Df)T
(
E F
F G

)
β

Df. (46)

12
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Proposition 3.12 (Riemannian metric topology)

Given a Riemannian metric g, it induces a topology via the metric

d(p, q) = inf
γ
L(γ) (47)

where the infinimum is taken over the set of smooth curves with γ(0) = p, γ(1) = q.
Moreover, this topology is equivalent to the natural surface topology (2.6).

Lemma 3.13 (Coarseness of Topology)

Let τ1 and τ2 be topologies on a set X. Then τ2 is at least as fine as τ1 if
∀x ∈ X, and sets U ⊆◦ X containing x, there exists U ′ ∈ τ2 with x ∈ U ′ ⊆ U .

Proof. Just algorithmically find U ′ for all x ∈ U and union these all up to find
U in τ2.

Of course, if two toplogies are as fine as each other, they’re the same (‘y ≤ x ≤
y =⇒ x = y’).

So how do we show this? Sketch: the key idea is that whenever we’re computing
lengths, really we’re integrating a bunch of |σu| and |σv| terms. So localise, and
use compactness to deduce lower and upper bounds on the size of these quantities,
which in turn leads to bounds for the Riemannian metric topology.

Remark 3.14. We’ve consistently ‘dropped down’ to R2 in order to work with tangent
spaces in this section, which we’ve always had tied to an R3 picture of an embedded smooth
surface in this course.

To understand tangent spaces for abstract surfaces, chapter 45 of [1] develops intuition
for how this is done (and I imagine this is covered in higher math as ever).

§3.3 Gaussian Curvature

With the linear algebraic tools setup, we can now move onto to begin to appreciate that
random interlude about pizza from IA Vector Calculus (but still no full proofs).

Definition 3.15 (Gaussian Curvature). Recall that the the shape operator S (3.8) can
be considered as a linear map from the tangent space TpΣ to itself. Therefore we can
make sense of its determinant:

The Gaussian curvature κ of a smooth surface in R3 is the quantity defined by

κ(p) = det(S)p. (48)

In practice, we are really going to compute this a bit differently:

13
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Proposition 3.16

κ =
LN −M2

EG− F 2
(49)

Recall from (3.9) that

I(Sv, w) = II(v, w). (50)

So in fact, SI = II which implies the formula after taking determinants.

However, there’s another characterisation of Gaussian curvature less tied to particular
parametrizations.

Proposition 3.17

Let (An)n≥1 be a sequence of nested open neighbourhoods of p that shrink arbitrarily
smalla. Then

|κ| = lim
n→∞

AreaS2(N(Ai))

AreaΣ(Ai)
(51)

Proof. The key idea here is to calculate areas via cross products. We can do this
since to calculate areas from σ parametrisations we integrate

√
EG− F 2, and this

is precisely σu × σv.
So (stare at it) if σ(Ui) = Ai,

AreaΣ(Ai) =

∫
Ui

||σu × σv||dudv. (52)

To deal with the Gauss map area, note that n = N ◦ σ is itself a paramterisation
of the surrounding region of the unit sphere we need. So apply the same formula,
extracting the u and v partial derivatives via the total derivative decomposition
(3.2),

AreaS2(N(Ai)) =

∫
Ui

||nu × nv||dudv =

∫
Ui

||DN(σu)×DN(σv)||dudv. (53)

Now note that since everything here is linear (and in particular we’re in 2D so
even direct expansion will suffice), if (v1v2) is the matrix that sends e1 to v1 and e2

to v2, and L : R2 → R2 is a linear map, then

det(Lv1Lv2) = det(L) det(v1v2). (54)

So

AreaS2(N(Ai)) =

∫
Ui

|κ(u, v)|||σu × σv||dudv (55)

Now by continuity, we can factor out |κ| and get the result.

aformally, eventually they all lie in B(p, ε) for all ε > 0.
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Remark 3.18. We can get the sign of kappa, too, by figuring out whether Ai and N(Ai)
are similarly orientated.

§3.4 Flavours of surfaces

Definition 3.19 (Global Isometry). f : Σ1 → Σ2 is an isometry if it preserves the
lengths of all curves.

We won’t, however use this definition much.

Definition 3.20 (Local Isometry). Surfaces Σ1 and Σ2 are locally isometric at p ∈ Σ1

and q ∈ Σ2 if there exists open neighbourhoods U1 and U2 around the two points such
that there exists an isometry between U1 and U2.

This is more useful, because of the following result.

Proposition 3.21 (Isometries determined by FFF)

Regions Σ1 and Σ2 are locally isometric at p ∈ Σ1 and q ∈ Σ2 iff we can parametrise
them such that the parametrisations have the same FFF.

Proof. The if direction is obvious since we compute the lengths of curves from the
FFF.

For the only if direction, it suffices to show that given the lengths of curves
only, we can extract the FFF from this.

Indeed, given σ a parametrisation around p with σ(0, 0) = p, then let γε(t) = σ(t, 0)
for 0 ≤ t ≤ ε. Then

d

dε
L(γε) =

d

dε

∫ ε

0
E(σ(t, 0))1/2dt→ E(p) (56)

in the limit ε → 0. We can use the curves γ = σ(0, t) and γ = σ(t, t) in a
similar manner in order to extract F and G. So the isometry between the two open
neighbourhoods will simply ’carry over’ the FFF since it preserves the lengths of
curves, and we can use the above computation (on the image surface!) in order to
extract the same E, F and G on this surface.

aPlease send any corrections and/or feedback to asc70@cam.ac.uk.

Definition 3.22. An ruled surface is a surface of the form

σ(u, v) = γ(u) + vδ(u) (57)

where σ is a smooth curve in the plane and δ is always orthogonal to γ.

Definition 3.23. A developable surface is a surface of the form

σ(u, v) = γ(u) + vγ′(v). (58)
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Theorem 3.24

Developable surfaces are locally isometric to the plane.

Proof. This is equivalent to having the same FFFs, and we can compute for a
developable surface parametrised by arc length its first fundamental form

(1 + v2κ2)dx2 + 2dxdy + dy2. (59)

This is ugly, but actually it shows that all we need to do is cookup some plane
curve γ̂(t) = (x(t), y(t), 0) that has curvature agreeing with γ’s curvature.

To satisfy this requirement, we need to find a solution to the system{
x′′(t) = κ(t)y′(t)

y′′(t) = −κ(t)x′(t)
(60)

that is also parametrised by arc lengtha.

To do this, setup the differential equation for

[
x′

y′

]
[
x′

y′

]′
=

[
0 −κ
κ 0

] [
x′

y′

]
. (61)

Now since locally κ will be differentiable, we can localise so that this system is in
the form y′ = f(t, y) where f is Lipschitz in the second variable, i.e a solution exists
via Picard-Lindelof.

Then we can choose arbitrary x(0) and y(0), rescale so that x′(0)2 + y′(0)2 = 1
and note that this curve will indeed be parametrised by arc length, since

d

dt
(x′(t)2 + y′(t)2) = 2x′(t)x′′(t) + 2y′(t)y′′(t) = 0 (62)

from the original system of equations.

aI am a bit uncertain as to what to do when locally the curvature’s sign is at an inflection point,
and whether the solution generated will really agree with both the positive and negative parts
of the curvature.

§3.5 A first peek at Möbius transformations

You probably remember the following from IA Groups:

Definition 3.25. A Möbius transformation M is a bijection from C∞ to itself given by

z 7→ az + b

cz + d
(63)

where a, b, c, d ∈ C and ad− bc 6= 0.

These turn out to have special significance to stereographic projection:

Definition 3.26. Stereographic projection is the map from the unit sphere S2 to
the plane R3 ∩ {z = 0} given by

(x, y, z) 7→
(

x

1− z
,

y

1− z
, 0

)
(64)

which is interpreted as projection from the north pole N :

16
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Figure 1: Stereographic projection (given by the map π+).

Exercise 3.27. Check the formula works!

Remark 3.28. Where possible, avoid using the formula, and use nice geometric arguments
(brevity is great for clarity, and exams!). This isn’t always possible, however (see next claim).

The important link between Möbius transformations and stereographic projection is
the following:

Definition 3.29. The subgroup PSU(2) ≤ PSL(2,C) is given by matrices of the form(
a b
−b̄ ā

)
(65)

where aā+ bb̄ = 1.

Proposition 3.30

Rotations of S2 (namely, the action of SO(3) on it) correspond 1-to-1 with Möbius
transformations (of the plane) in the group PSU(2) of unitary matrices in PSL(2,C).

Proof. I think that this has now been removed from the course. See Dexter’s if
interested!

§4 Geodesics

This part is mostly applying our tool of the first fundamental form in the Euler-Lagrange
setting.

Proposition 4.1

Lengths of curves are given by

L(γ) :=

∫
γ
||γ′(t)||dt =

∫
γ

√
Eu̇2 + 2Fu̇v̇ +Gv̇2dt. (66)

Exercise 4.2. Show this (hint17).

We don’t actually want to apply Euler-Lagrange to L(γ) directly, since the square root
is messy and it turns out we can avoid it, and still get equations that tell us when curves
are length minimisers.

17write ||γ′(t)|| =
√
γ′(t).γ′(t)

17
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Definition 4.3 (Energy). The energy functional is given by

E(γ) :=

∫
γ
||γ′(t)||2dt (67)

Remark 4.4. Unsurprisingly, L is parametrisation independent (exercise ...). However,
WARNING: E is not.

From here, we can apply Euler-Lagrange to study energy minimisers over curves
between two points, since E is an expression in the form∫

f(t, u(t), u′(t), v(t), v′(t))dt. (68)

Proposition 4.5

Doing this, we get the fairly gross geodesic equations

d

dt
(Eu̇+ F v̇) =

1

2

(
Euu̇

2 + 2Fuu̇v̇ +Guv̇
2
)

(69)

and

d

dt
(Fu̇+Gv̇) =

1

2

(
Evu̇

2 + 2Fvu̇v̇ +Gvv̇
2
)
. (70)

Remark 4.6. As with most Euler-Lagrange things, these need not be committed to memory;
the Euler-Lagrange idea of considering small perturbations f 7→ δf (see any VP notes) is
quick to rederive even in timed conditions.

As promised, we now show that studying geodesics, i.e length minimisers, amounts to
studying E minimisers:

Proposition 4.7 (Integral Cauchy-Schwarz)

Define an inner product on continuous functions f : [a, b]→ Rge0 as follows:

〈f, g〉 =

∫ b

a
f(t)g(t)dt. (71)

Then

〈f, g〉2 ≤ 〈f, f〉〈g, g〉 (72)

With equality iff f and g are scalar multiples.

Proof. Any Cauchy-Schwarz proof generalises to this infinite dimensional setting
with no issues.

Applying C-S with ||γ′(t)|| and the identically 1 function,

L(γ)2 ≤ kE(γ) (73)

where k is the length of the interval used to parametrise γ.
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Proposition 4.8

Energy minimisers are length minimisers.

Proof. Suppose that for contradiction’s sake γ minimised energy but wasn’t a length
minimiser. Then pick some γ′ that was a length minimiser, parametrised with
constant speed. Then (73) gives us that

E(γ) >
1

k
L(γ)2 ≥ 1

k
L(γ′)2 = E(γ′) (74)

i.e γ isn’t in fact an energy minimiser, contradiction.

To avoid using the messy geodesic equations, we might be able to use the following
alternative characterisation:

Proposition 4.9

Let Σ be a smooth surface in R3 and γ : [a, b]→ Σ be a smooth curve on Σ. Then γ
is a geodesic if and only if the derivative of the tangent vector to γ is everywhere
normal to Σ.

Proof. Exercise! Hinta.

aThere are two geodesic equations, and normal to the tangent plane is equivalent to perpendicular
to σu and σv ... you guess what you need to do!

§4.1 Geodesic normal form

I assume that the rigour won’t be covered in exams (and it is pretty technical analysis
anyway), so the following will be handwaved:

Proposition 4.10 (Geodesic existence)

∀p ∈ Σ embedded in R3 and all tangent vectors v at p, there’s a geodesic γ : [0, ε)→ Σ
locally, with γ(0) = p and γ′(0) = v.

Proof. Working with the gross geodesic equations, this is a question about existence
of solutions to differential equations, specifically some of the form[

E F
F G

] [
u′′

v′′

]
= ... (75)

Where the RHS is some gross (but smooth!) expression in terms of u, v, u′ and v′.
Now the first fundamental form is invertible (wth smooth inverse), so after inverting

it we’re indeed in the Picard-Lindelöf setting. Strengthening what we proved in
Analysis and Topology, it turns out that this smooth setup means solutions are also
smooth (proof omitted). Hand wave over.

Given this existence result, we now can make a coordinate system by travelling along
the (locally existent) geodesic γ(v) and then constructing for every γ(v) a geodesic γv
that is perpendicular to γ and is tangent to γ. This can be thought of as a bunch of
orthogonal ‘offshoot’ branches from a common stem.

Here’s the picture to have in mind:
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Figure 2: γ is parametrised by t, not v, but the ‘offshoot’ intuition is shown.

Remark 4.11. The curves u 7→ γv(u) for fixed v are of course geodesics, but WARNING
there’s no guarentee that v 7→ γv(u) is a geodesic for fixed u, except when u = 0. This is the
reason the geodesic normal form doesn’t just collapse to something isometric to the plane
below!

Proposition 4.12

Embedded surfaces Σ ⊆ R3 have parametrisations of the form

du2 +G(u, v)dv2 (76)

locally.

Proof. Use (via the handwaving...) the geodesic normal coordinates above:

σ(u, v) = γv(u). (77)

This is an allowable parametrization because at u = 0, σu ⊥ σv (and both are
definitely not vanishing), and hence Dσ is locally invertible, so by the inverse
function theorem locally the parametrisation is invertible, so this is an allowable
parametrization indeed (σ and Dσ both injective).
E = 1 follows from the geodesics being parametrised by arc length, but it’s not

obvious that F is identically zero: we have to use the geodesic equation (70) on a
curve with v constant, i.e an offshooting geodesic. Then the geodesic equation gives
that

Ḟ = Ev = 0 (78)

since we saw E = 1. But on the other hand by the MV chain rule

Ḟ = Fuu̇+ Fvv̇ = Fu = 0 (79)

so in fact F is u independent. When u = 0, F = 0 so F ≡ 0 everywhere.

aPlease send any corrections and/or feedback to asc70@cam.ac.uk.

An immediate application of this is another, even simpler characterisation of Gaussian
curvature
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Proposition 4.13

Suppose Σ is parametrised by geodesic normal form. Then

κ =

√
Guu√
G

(80)

Proof. Just use (3.16).

§5 Hyperbolic geometry

To motivate this section (and it really needs motivation!), we need some heavy machinery:

Definition 5.1 (Triangles on surfaces). A triangle on a surface is a set of three points
on that surface joined pairwise by geodesics.

Definition 5.2 (Triangulation). A triangulation of a surface is a graph on the surface
where edges are geodesics and where the only faces are triangles21.

Definition 5.3 (Euler Characteristic). The Euler characteristic χ(Σ) of a surface Σ
is the invariant value

V − E + F (81)

for a triangulation on that surface.

The proof of invariance in the plane can be found here: https://en.wikipedia.org/
wiki/Euler_characteristic#Proof_of_Euler’s_formula. I don’t think that the fact
locally surfaces are ∼= R2 is enough to deduce this fact more generally. See II Algebraic
Topology (apparently) for a better definition of χ as a topological invariant (i.e quantity
preserved by homeomorphism).

Theorem 5.4 (Global Gauss-Bonnet)

Let Σ be an abstract compact smooth surface with abstract Riemannian metric g,
and Gaussian curvature κ. Then∫

Σ
κdA = 2πχ(Σ). (82)

Proof. (Black-boxed).

21For the pedantic, more formal definitions can probably be found elsewhere
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Proposition 5.5 (Donuts!)

Let Σ be a surface with genusa g embedded in R3. Then Σ has Euler characteristic

χ(Σ) = 2− 2g. (83)

Proof. Sketch: make a triangulation for a torus as a base case, then remove two disk
within triangles of two copies of the torus, stitch these together while adding three
edges to keep a triangulation and note that the Euler characteristic decreases by
2.
afor now, work with the informal defintion ‘number of holes in surface’.

What do we get with all this machinery? Well, suppose we wished to consider metrics
on these surfaces that were as symmetrical as possible. Then a natural choice would
be to wish for surfaces of constant curvature. By rescaling all the atlases by a factor of
k 6= 0, namely φ 7→ kφ we would now be assuming Σ has curvature κ ∈ {−1, 0, 1}.

We’ve extensively studied the two non-negative cases here, which correspond to the
plane and the sphere). However, (5.4) suggests that whenever g > 1, we will need to
consider the κ = −1 case.

While we’ve seen on the example sheet the tractoid which has constant curvature −1,
we will now see that there are much easier (2D!) so-called ‘models’ to work with than
that surface.

Eventually, we will actually get to build some g > 1 surfaces, and bizarrely this will
involve trousers. Stay tuned!
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Proposition 5.6

Let Σ = h the upper half plane model, namely the subset of C {z : Imz > 0}
equipped with the following abstract Riemannian metric:

dx2 + dy2

y2
. (84)

Then Σ is hyperbolic (i.e has constant curvature -1 throughout Σ).

Proof. Sadly, despite the disk model being probably the most common hyperbolic
model we will work with, this comes down a clever trick:

Under the change of coordinates x = e−u tanh(v) and y = e−usech(v) (check that
these indeed parametrise in the way we need) we can explicitly calculate dx and dy
via the multivariable chain rule from IAa. Then the metric is

du2 + cosh2(u)dv2 (85)

and hence the Gaussian curvature of h is

−
√
Guu√
G

= −1 (86)

@todo write the geodesic normal form section to reference the formula.

aI don’t think that formalising this applied math hand-waving with differential forms (i.e dx etc.) is
actually too far out of reach of this course, and it is a nice application of the multivariable calculus
developed in Analysis and Topoligy. See https://venhance.github.io/napkin/Napkin.pdf

section XII or even http://pi.math.cornell.edu/~sjamaar/manifolds/manifold.pdf for a
complete exposition. However, I currently do not have a good intuition for why squaring these
differential forms is a legitimate manipulation, and this is needed to derive the result.

Important intuition: if we’re given a point to work with in a hyperbolic question, use
the disk model with this point as the origin. Alternatively, if we’re given a line, use the
half-plane model with the line as the (positive) imaginary axis.

§5.1 Möbius transformations (very incomplete)

At this point in the course, we return to working with inversions and Möbius transforma-
tions, this time in the hyperbolic models. It’s easy to get lost in wondering why we’re
doing all this. To set the record straight

Definition 5.7. In H2, a flag is a triple consisting of

• A (global) geodesic γ.

• A point p ∈ γ.

• A particular side of γ.

We care about flags because of the following result, essentially the KEY theorem of
the disk models!
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Proposition 5.8

Let F be the set of isometries that act transitively on the set of flags in H2. Then
F is generated by the Möbius transformations that preserve the particular model of
H2 that we’re working with, and a reflection in a geodesic.

Remark 5.9. We only need one particular reflection (e.g z 7→ −z̄, reflection in the imaginary
axisa) to generate F due to being able to obtain all such geodesics with MTs.

athis works in either model.

Remark 5.10. If we insist such isometries preserve orientation, we in fact only get Möbius
transformations, without the reflections.

Remark 5.11. In fact we have a uniqueuness statement too: we have a unique hyperbolic
isometry that maps a flag to another flag.

Proof. One direction here is not too difficult: to show Möbius transformations are
isometries, it is not too difficult to check that their generators are isometries.

The proof that all orientation-preserving isometries are Möbius transformations is
more difficult, and the claims made should be verified! Work in the disk model. Given
some orientation-preserving isometry T , we can find a Möbius transformation M such
that M ◦ T fixes 0 and 1. It’s clear that isometries must also preserve geodesics, so in
fact M ◦ T preserves R ∩D. In addition, isometries in this model must preserve angles,
because if locally an isometry sheared space, then curve lengths would not be preserved25.
So, once again applying geodesic preservation, we have that iR∩D is preserved by M ◦T
(it can’t be reflected since we’re assuming we’re in the orientation-preserving case). From
this point, the isometry must be the identity since points are determined uniquely by
their distance (in hyperbolic, NOT Euclidean metric) to the real and imaginary axis,
along with whether they are closest to the positive or negative parts of both of these
axes. I made a picture!

@todo: write orientation preserving section.

So what actually are the Möbius transformations that preserve our various models?

Proposition 5.12

In the disk model, the Möbius transformations that preserve the disk (for the last
time, equivalently the orientation preserving isometries!) are those of the form

z 7→ λ
z − a
āz − 1

(87)

where |λ| = 1 and |a| < 1.

Proof. Complex analysis example sheet 1.

25I would appreciate a clearer reason for this statement!
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Figure 3: Given some point C in the disk, the distance of C from the real and imaginary
axes are the lengths of the geodesic segments CE and CD shown. This gives
rise to the fact that an isometry that fixes R and iR is in fact the identity.

Proposition 5.13

In the half-plane model, the relevant Möbius transformations are those of the form

z 7→ az + b

cz + d
(88)

where

[
a b
c d

]
∈ SL(2,R).

Proof. Sketch: this isn’t actually too hard: we need to fix the real line, which quickly
yields that all the coefficients need be real, and then we can just isolate the cases
c = 0 and c 6= 0. In the former the result falls out quickly, and in the latter case,
WLOG c = 1 so write out

az + b

z + d
=
−1

z + d
+ a (89)

which is the composition of a bunch of two translations and also z 7→ −1
z . This

final map is an isometry since we have metric

|dz|2

4|Imz|2
(90)

and changing variables to w = −1
z preserves thisa.

aNote that again the differential form manipulation should make you a little uneasy...

§6 That crazy hard section at the end of the course.

For the last section of the course, we return to the torus as it arose from the identification
space of the square in Analysis and Topology. What happens when we tweak the square?
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If we ‘fix’ the torus we’re working with, and instead consider exactly what’s going on
when we change the metric but not the underlying surface

Considering parallelograms with area 1, we can still identify opposite sides and get a
pseudo-torus.

Surprisingly, we get all flat metrics on the torus this way (no proof).
Somewhat like Gauss-Bonnet, in which we tie a topological invariant (Euler char-

acteristic) to something seemingly unrelated (global curvature) and geometrical, this
ties together hyperbolic geometry and a space of metric, which apparently is something
studied in higher maths than where we are at now.
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