
Some Analysis Things

Arthur Conmy*

Part IB, Easter Term 2021

In these notes, I make some brief comments on the IB Analysis courses1.
Credit is due to Evan Chen for the style file for these notes2.

§1 Integration

*Please send any corrections and/or feedback to asc70@cam.ac.uk.
1strictly, just Analysis and Topology and Complex Analysis, but I hoep that the reader agrees that
Analysis and Topology is ... more than one courses worth of material!

2Available here: https://github.com/vEnhance/dotfiles/blob/master/texmf/tex/latex/evan/

evan.sty.
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Theorem 1.1 (Interchanging Differentiation and Integration)

Let f : R× [0, 1]→ R be a cts function of θ and t, and suppose ∂f
∂θ is also cts.

Then

d

dθ

∫ 1

0
f(θ, t)dt =

∫ 1

0

∂f

∂θ
(θ, t)dt. (1)

Proof. The key idea is that differentiability is a local property, so we can force the
domain of ∂f

∂θ to be compact.

WLOG let θ = 0. Now ∀ε > 0, pick δ > 0 so that
∣∣∣∂f∂θ (θ, t)− ∂f

∂θ (0, t)
∣∣∣ < ε for

(θ, t) ∈ [−δ, δ]× [0, 1]. Then let

F (θ) =

∫ 1

0
f(θ, t)dt. (2)

Then we can directly calculate (for |h| < δ)

1

h
(F (h)− F (0))) =

∫ 1

0

f(h, t)− f(0, t)

h
dt =

∫ 1

0

∂f

∂θ
(θt, t)dt. (3)

where the last equality follows from the mean value theorem. θt ∈ (−|h|, |h|) is a
function of ta.

But our choice of delta means that this differs by at most ε from∫ 1

0

∂f

∂θ
(0, t)dt, (4)

so we’re done.

aExtra: can we always make it a cts function of t?

Theorem 1.2 (CIF for Derivatives)

Let U be a domain and f : U → C holomorphic. Let D(0, 1) ⊆ U and w ∈ D(0, 1).
Then

f (n)(w) =
1

n!

∮
∂D(0,1)

f(z)

(z − w)n+1
dz. (5)

Proof. Case n = 1 is the ordinary integral formula, and we show how the n = 2
arises by applying (1.1). The higher order cases arise similarly.

We can write the n = 1 case as∮
∂D(0,1)

f(z)

z − w
dz =

∫ 1

0

f(γ(t))γ′(t)

γ(t)− w
dt. (6)

where γ(t) = e2πit. We can now directly apply the previous result, since the
integrand’s partial w derivative is indeed cts, provided we localise to a ball around
w (so that the 1

γ(t)−w term doesn’t get very large).
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§2 Differentiation

I don’t think this part of the course needs to be anywhere near as feared as it is currently.

Definition 2.1 (Norm). Let V be a real vector space. A norm on V is a function
||.|| : V → R satisfying

� ||v|| ≥ 0, with equality iff v = 0.

� ||v + w|| ≤ ||v||+ ||w||.

� ||λv|| = |λ|||v||.

Remark 2.2. This naturally induces a topology on V by turning it into a metric space
with distance function d(v, w) = ||v − w||.
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Theorem 2.3 (Only one norm)

Let V be a finite dimensional vector space. Then all norms on V are Lipschitz
equivalent.

Proof. Fix a basis e1, ..., en of V . Then let ||.||2 be the Euclidean norm, i.e

||λ1e1 + ..+ λnen||2 =
√
λ21 + ...+ λ2n. (7)

We show that all norms are Lipschitz equivalent to the Euclidean norm, and since
Lipschitz equivalence is an equivalence relation, this will suffice.

� ∃m > 0 such that ||v|| ≤ m||v||2 for all v ∈ V :

Direct application of the triangle inequality. Let

E =
n

max
i=1
||ei|| > 0. (8)

Then if v = λ1e1 + ...+ λnen, and

Λ =
n

max
i=1
|λi|, (9)

then

||v|| ≤ |λ1|||e1||+ ...+ |λn|||en|| ≤ E(|λ1|+ |λ2|+ ...+ |λn|) (10)

where the first inequality follows from the triangle inequality. So

||v|| ≤ nEΛ. (11)

Now ||v||2 ≥ Λ and hence m = nE works (note we need Λ independence, but
E dependence is fine since the former is a property of the specific v, but the
latter a property of the norm).

� ∃M > 0 such that ||v|| ≥M ||v||2 for all v ∈ V :

For this direction, consider the identity map

ι : (V, ||.||2)→ (V, ||.||) (12)

between metric spaces. This is continuous, by the other direction of this proof.

Consider the image of the set of points S = {v ∈ V : ||v||2 = 1}. This is a
compact set, since we can check that sequences have convergent subsequences
since all ei components will have values that vary in some bounded range.

Now the cts image of a compact set is compact, There is a minimum value
of ||ι(v)|| that is achieevd for some v ∈ V , and cannot be 0 because of the
definition of norm.

Then this is exactly the M value needed for the proof.
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Why does this matter? Recall the definition of differentiablility

Definition 2.4. f : Rm → Rn is differentiable at p with derivative the linear map
T (p)(h) if

lim
h:||h||2→0

||f(p+ h)− f(p)− T (p)(h)||2
||h||2

. (13)

The important thing to notice here is that while f and T (p) are both maps from Rm,
the former exclusively maps from points very close to p, and the latter exclusively maps
from points very close to 0. If this isn’t clear, chapter 42 of [1] (Napkin) provides a far
better explanation than what I can give (and includes pictures!).

To be concrete however, working with a multi-dimensional limit is hard. In practice,
we are likely to generally use the following result (cross-posted from my Geometry notes).
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Theorem 2.5 (Computing derivatives in n dimensions.)

Suppose that U ⊆◦ Rm and f : U → R has continuous partial derivatives at p ∈ U .
Then f is differentiable at p, with derivative

Df(p)(h) =
∂f

∂x1
h1 + · · ·+ ∂f

∂xm
hm. (14)

Proof. Decompose as a telescoping sum

f(x1 + h1, · · · , xm + hm)− f(x1, · · · , xm) (15)

= f(x1 + h1, · · · , xm + hm)− f(x1 + h1, · · · , xm−1 + hm−1, xm) (16)

+f(x1 + h1, · · · , xm−1 + hm−1, xm)− f(x1 + h1, · · · , xm−1, xm) (17)

+ · · · (18)

+f(x1 + h1, x2, · · · , xm)− f(x1, · · · , xm). (19)

And now by an ‘m-ε’ proof (i.e m applications of the triangle inequality), we use
continuity of the m partial derivatives to deduce the desired derivative expression.

However, actually doing this is somewhat more subtle than it may seem at first
(for example, to me!), since the limit ||h||2 → 0 need be independent of the relative
‘speeds’ that each h component approach 0.

We illustrate how we do this in the case m = 2; the argument is easily generalised
to the higher order cases.

Example 2.6

WLOG show differentiability at 0.
The quantity Q that we need show approaches 0 as h1 → 0 and h2 → 0 is

Q =
f(h1, h2)− f(0, 0)− h1 ∂f∂x |0 − h2

∂f
∂y |0√

h21 + h22
(20)

Now by the triangle inequality, and that
√
h21 + h22 ≥ |h1|, |h2|,

|Q| ≤

∣∣∣∣∣f(h1, h2)− f(0, h2)− h1 ∂f∂x |0
h1

∣∣∣∣∣+

∣∣∣∣∣f(0, h2)− f(0, 0)− h2 ∂f∂y |0
h2

∣∣∣∣∣ (21)

as h2 → 0, clearly the latter term approaches 0 (this is easy due to the
remark (2.8) made below). However, for the first term the ‘different speeds’
issue immediately arises. To remedy this, what we can do is localise to an open
set U ⊆◦ R2 around 0 so that when (x, y) ∈ U ,∣∣∣∣∂f∂x |(x,y) − ∂f

∂x
|0
∣∣∣∣ < ε. (22)

Then this means that if (h1, h2) ∈ U ,

f(h1, h2)− f(0, h2)

h1
(23)

differs from ∂f
∂x |0 by at most ε, since otherwise by the mean value theorem,

somwhere in U we would have ∂f
∂x differing by more than ε from ∂f

∂x |0.

6



Arthur Conmy8 (Part IB, Easter Term 2021) Some Analysis Things

Remark 2.7. This is basically the same sort of thing we did in IA DEs when we integrated
from (x1, y1) to (x2, y2) by first travelling from (x1, y1) to (x2, y1) (with fixed y value) and
then from (x2, y1) to (x2, y2) (with fixed x value), like a staircase.

Remark 2.8. Actually, the last term in the telescoping series, f(x1 + h1, x2, · · · , xm) −
f(x1, · · · , xm) is the partial derivative (in x1) of f at (x1, ..., xn). So we only need continuity
of n− 1 of the partial derivatives at a point, and existence of the last, in order to deduce
differentiablility at a point.

An important application of this is the following sufficient condition for a function to
be complex differentiable:

Theorem 2.9 (Holomorphic sufficiency)

Suppose that the real and imaginary parts of f = u+ vi satisfy the Cauchy-Riemann
equations, i.e ux = vy and uy = −vx. Then if u and v are C1, then f is holomorphic.

Proof. We want to follow the proof methodology of (2.5) as close as possible. In
particular, let’s just show differentiability at 0.

This means that since f : C → C is essentially a map R2 → R2, we want to
consider its components, so we only need deal with functions R2 → R. This is of
course is exactly the same thing as considering real and imaginary parts.

We ‘know’ that f ′ = ux + ivx from computing the limit only in the real direction.
In addition, because all of our limits will be over a denominator of h1 + ih2 we
therefore write

ux + ivx =
(ux + ivx)(h1 + ih2)

h1 + ih2
=

(uxh1 − vxh2) + i(vxh1 + uxh2)

h1 + ih2
. (24)

Now it suffices to show that

lim
h1,h2→0

u(h1, h2)− u(0, 0)− uxh1 + vxh2√
h21 + h22

= 0 (25)

for the real part, and similarly for the imaginary part. Because the C-R equations
are satisfied, the same staircase argument works.

Now back to less computational things. Look again at (2.4). There’s nothing special
about ||.||2! For our purposes, a more useful norm is the operator norm.

Definition 2.10 (Operator norm). The operator norm on the space of linear maps
L(Rm,Rn) is the value

sup
x 6=0

||L(x)||2
||x||2

. (26)

This has the property that it is sub-multiplicative, i.e ||AB|| ≤ ||A||||B|| (exercise to
reader).
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Example 2.11 (2019 P1L)

The matrix function f(M) = M−1 is differentiable at I.

Proof. The following proof relies on the fact that the set of n× n invertible matrices
is an open subset in the set of n× n matrices.

This is quite a nice result in its own right, and follows from the following lemma

Lemma 2.12

The determinant map det : Mn×n(R)→ R is cts.

Proof. The map is simply a polynomial in the n2 variables, which (check if
unsure) are cts.

Due to this, since R \ {0} is open, so the set of invertible matrices is open since it
is det−1(R \ {0}).

Back to the long question: we first (e.g by checking the one-dimensional case)
convince ourselves that the answer is −I. This leaves us to verify that

||(I +H)−1 − I +H||
||H||

→ 0. (27)

Now we can check that

(I +H)−1 − I +H = H2(I +H)−1. (28)

So using the sub-multiplicative property, since

||(I +H)−1 − I +H||
||H||

≤ ||H(I +H)−1|| ≤ ||H||||(I +H)−1|| (29)

we only need show that that (I +H)−1 has bounded norm for sufficiently small
Ha. But this is true since suppose ||v||2 = ||w||2 = 1 and

(I +H)−1v = λw, (30)

Then

1

λ
v = Iw +Hw. (31)

Now the magnitude of the RHS is going to arbitrarily close to 1 due to the bounded
operator norm of H. So λ can’t grow large.

aI can’t reason this part as cleanly as I hope the rest of the proof is reasoned!

§3 Notation and Glossary

§3.1 Notation

§3.2 Glossary

� Cts: continuous.
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