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» ... but how does it all work?
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» Consider a fixed, but unknown distribution p4, that we have
access to a large number of i.i.d samples from:

X15 X2, o5 XN ™~ Pd-
» Note that the x could be images, text, audio ...
» Open-ended problem: how can we generate samples xj, x5, ...
that are similar to the samples x1, x2, ..., xy7
» Big question: what does ‘similar’ mean?
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‘Taxonomy’ of generative models.

From lan Goodfellow's 2016 NIPS GANs tutorial (perhaps slightly
outdated, but great talk).

Taxonomy of Generative Models
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Intuitions and recurring themes.

1. Real-world datasets are high-dimensional but they admit a low
dimensional support (and this leads to counterintuitive
behaviour).

» E.g for a HQ image dataset, the number of dimensions may be
Cx Hx W =3x1024 x 1024 = 3,145,728

» Lower dimensional support: connection to manifold learning:
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I

2. When we want to represent a large class of functions F,
neural networks are a great choice.



Architectural overview of generative models.

Great resource: https://lilianweng.github.io/lil-log/
2021/07/11/diffusion-models.html

GAN: Adversarial x' Generator ,
P X
training G(z)
VAE: maximize Decoder %
variational lower bound o (x|z)
Flow-based models: x| Flow z '“l’lerse s
Invertible transform of F(x) =] f7'(2)
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse



https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html
https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html
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Where GANs came from.

The original motivation for GANs came from a game theoretic
standpoint; pit two neural networks G and D against each other
and define the natural analogue of cross entropy loss in this case:

V(D, G) = Ex~p,llog D(x)] + Ex;(0,nllog(l — D(G(2)))] (1)

(the distribution of generated images, G(z) will be denoted p;).

> We're already in the setting to apply back-prop, so what's
wrong?
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Where GANs came from.

The original motivation for GANs came from a game theoretic
standpoint; pit two neural networks G and D against each other
and define the natural analogue of cross entropy loss in this case:

V(D, G) = Ex~p,llog D(x)] + Ex;(0,nllog(l — D(G(2)))] (1)

(the distribution of generated images, G(z) will be denoted p;).

> We're already in the setting to apply back-prop, so what's
wrong?

» This miserably fails.

» More theoretical analysis leads to modifying the V above to
fix the vanishing gradients problem.

> However, the training remains unstable, and highly dependent
on heuristics and parameter tuning.



Picture interlude: what we're approaching.
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Wasserstein and theoretically principled GANs.

Reference: Arjovsky, Chintala and Bottou (2017) and Gulrajani et
al (2017).
» Given the true distribution P, and a generated distribution
Pg, optimize

L(pr; pg) (2)

where L is some loss function between probability
distributions.

» L needs to be estimable from iid samples.

» L needs to be differentiable.

» This leaves a lot of possiblities!

» The cross-entropy loss on the previous slide leads to GANs

minimising the Jensen-Shannon divergence £ s between the
distributions. Dy fixes vanishing gradients.



So, which loss function?

» Define the KL divergence as

D (P || Q) = /

RN

ploiog (29 ) o

then the Jensen-Shannon divergence is
1 1
ISD(P || Q) = 5D(P || M)+ D(Q || M)

where M = 3(P + Q).



So, which loss function?

» Define the KL divergence as

D (P || Q) = /

RN

ploiog (29 ) o

then the Jensen-Shannon divergence is
1 1
ISD(P || Q) = 5D(P || M)+ D(Q || M)

where M = 3(P + Q).

» A much better choice is the Wasserstein, or so-called
Earth-Mover distribution between distributions.

EMD(P,, Pg) = sup Exwprf(x) - ]EXNPG f(X)

Ifll<a
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The StyleGAN Architecture.

» This is what's behind ThisPersonDoesNotExist.com!
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Diffusion models

This is a different approach to dealing with the low-dimensional
problem.

Fig. 2. The Markov chain of forward (reverse) diffusion process of generating a
sample by slowly adding (removing) noise. (Image source: Ho et al. 2020 with a few
additional annotations)



Diffusion models

Forward SDE (data — noise)

dx = f(x,t)dt + g(t)dw
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scor function
dx = [f(x,t) —

g (t) dt + g(t)dw

Reverse SDE (noise — data) :
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