
Generative modelling: from theory to
state-of-the-art.

Arthur Conmy

Chalk Talk, 13 September 2021



Plan

What is generative modelling?
Background and motivation.
Statement of the problem.

What are some high-level aspects of generative modelling?
‘Taxonomy’ of generative models.
Intuitions and recurring themes.
Architectural overview of generative models.

What are some examples of generative modelling techniques?
GANs: a brief history.
Diffusion models and recent advances.



Plan

What is generative modelling?
Background and motivation.
Statement of the problem.

What are some high-level aspects of generative modelling?
‘Taxonomy’ of generative models.
Intuitions and recurring themes.
Architectural overview of generative models.

What are some examples of generative modelling techniques?
GANs: a brief history.
Diffusion models and recent advances.



Background and motivation.

I

I ... but how does it all work?



Background and motivation.

I

I ... but how does it all work?



Statement of the problem.

I Consider a fixed, but unknown distribution pd , that we have
access to a large number of i.i.d samples from:
x1, x2, ..., xN ∼ pd .

I Note that the x could be images, text, audio ...

I Open-ended problem: how can we generate samples x ′1, x
′
2, ...

that are similar to the samples x1, x2, ..., xN?

I Big question: what does ‘similar’ mean?
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‘Taxonomy’ of generative models.

From Ian Goodfellow’s 2016 NIPS GANs tutorial (perhaps slightly
outdated, but great talk).



Intuitions and recurring themes.

1. Real-world datasets are high-dimensional but they admit a low
dimensional support (and this leads to counterintuitive
behaviour).

I E.g for a HQ image dataset, the number of dimensions may be
C × H ×W = 3× 1024× 1024 = 3, 145, 728 .

I Lower dimensional support: connection to manifold learning:

2. When we want to represent a large class of functions F ,
neural networks are a great choice.
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Architectural overview of generative models.

Great resource: https://lilianweng.github.io/lil-log/

2021/07/11/diffusion-models.html

https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html
https://lilianweng.github.io/lil-log/2021/07/11/diffusion-models.html
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Where GANs came from.

The original motivation for GANs came from a game theoretic
standpoint; pit two neural networks G and D against each other
and define the natural analogue of cross entropy loss in this case:

V (D,G ) = Ex∼pd [logD(x)] + Ez∼Nn(0,I )[log(1− D(G (z)))] (1)

(the distribution of generated images, G (z) will be denoted pg ).

I We’re already in the setting to apply back-prop, so what’s
wrong?

I This miserably fails.

I More theoretical analysis leads to modifying the V above to
fix the vanishing gradients problem.

I However, the training remains unstable, and highly dependent
on heuristics and parameter tuning.
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Picture interlude: what we’re approaching.



Wasserstein and theoretically principled GANs.

Reference: Arjovsky, Chintala and Bottou (2017) and Gulrajani et
al (2017).

I Given the true distribution Pr and a generated distribution
Pg , optimize

L(pr , pg ) (2)

where L is some loss function between probability
distributions.

I L needs to be estimable from iid samples.
I L needs to be differentiable.
I This leaves a lot of possiblities!

I The cross-entropy loss on the previous slide leads to GANs
minimising the Jensen-Shannon divergence LJS between the
distributions. DKL fixes vanishing gradients.
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So, which loss function?

I Define the KL divergence as

DKL(P ‖ Q) =

∫
Rn

p(x) log

(
p(x)

q(x)

)
dx (3)

then the Jensen-Shannon divergence is

JSD(P ‖ Q) =
1

2
D(P ‖ M) +

1

2
D(Q ‖ M) (4)

where M = 1
2(P + Q).

I A much better choice is the Wasserstein, or so-called
Earth-Mover distribution between distributions.

EMD(Pr ,Pθ) = sup
‖f ‖L≤1

Ex∼Pr f (x)− Ex∼Pθ
f (x). (5)
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The StyleGAN Architecture.

I This is what’s behind ThisPersonDoesNotExist.com!
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Diffusion models

This is a different approach to dealing with the low-dimensional
problem.



Diffusion models
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