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Where GANs came from.

The original motivation for GANs came from a game theoretic standpoint;
pit two neural networks G and D against each other and define the natural
analogue of cross entropy loss in this case:

V (D,G ) = Ex∼Pr [logD(x)] + Ez∼Nn(0,I )[log(1− D(G (z)))] (1)

(the distribution of generated images, G (z) will be denoted Pg ).

We’re already in the setting to apply back-prop, so what’s wrong?

This miserably fails.

More theoretical analysis leads to modifying the V above to fix the
vanishing gradients problem.

However, the training remains unstable, and highly dependent on
heuristics and parameter tuning.
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Wasserstein and theoretically principled GANs.

Reference: Arjovsky, Chintala and Bottou (2017) and Gulrajani et al
(2017).

Given the true distribution Pr and a generated distribution Pg ,
optimize

L(pr , pg ) (2)

where L is some loss function between probability distributions.

L needs to be estimable from iid samples.
L needs to be differentiable.
This leaves a lot of possiblities!

The cross-entropy loss on the previous slide leads to GANs minimising
the Jensen-Shannon divergence LJS between the
distributions. DKL fixes vanishing gradients.
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Wasserstein GANs

Reference:
https://vincentherrmann.github.io/blog/wasserstein/ (great
article).

The Wasserstein distance between two discrete distributions is

EMD(Pr ,Pθ) = inf
γ∈Π

∑
x ,y

‖x − y‖γ(x , y) = inf
γ∈Π

E(x ,y)∼γ‖x − y‖. (3)

This generalises to continuous distributions via a duality theorem:

EMD(Pr ,Pθ) = sup
‖f ‖L≤1

Ex∼Pr f (x)− Ex∼Pθ
f (x). (4)

How do we model a complicated function class such as 1-Lipschitz
functions? With neural nets of course!
(add E[(|∇f | − 1)2] term to enforce ||f ||L ≤ 1).
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Why Wasserstein?

As an explicit example, see the original Wasserstein paper!
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First change in StyleGAN.

Intuition: a Nn distribution is likely to be totally inappropriate for real
datasets.

Use another (!) neural network network f to

‘disentangle’ Z to W.
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Full StyleGAN Architecture.

Karras et al. (2017, 2018, 2019, 2020)1 have drastically empirically
improved the samples that GANs are able to generate. StyleGAN is
essentially the concatenation of two neural networks:

Initial latent mapping network f : Z → W.

Synthesis network h :W → X , where X the space of images.

Additional choice to map w ∈ W repeatedly into the synthesis
network (with additional noise) was also a significant contribution of
the work.

1ALL important papers!
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Empirical results of style architectures.

The most well-known application of
StyleGAN2 is the site
thispersondoesnotexist.com:

Figure: Sample of a face close to the
‘average’ face in the StyleGAN prior.

We can do even better!
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The general GAN inversion problem.

Reference: GAN Inversion: A Survey (2021)

Archetype: given ground truth x , solve

z∗ = argminz∈P [`(G (z), x) + R(z)] (5)

Choices:

General approach: optimisation or encoding (or both)?
Loss function `: pixelwise loss turns out to lead to very blurry images,
even after regularization. Use VGG loss.
Which latent space P?
How to regularize?
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An example from my training.

Figure: Inversion in less than 10 minutes (using almost only VGG loss).
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The SOTA for inpainting.

Reference: R. Marinescu, D. Moyer, P. Golland [2020]

Figure: The inpainting capabilities of inverting StyleGAN.
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The SOTA for inpainting.

Reference: R. Marinescu, D. Moyer, P. Golland [2020]

Figure: Regularized, efficient optimization?

Conmy, Arthur GANs for image reconstruction CIA Seminar, May 2021 16 / 20



The SOTA for inpainting.

Reference: R. Marinescu, D. Moyer, P. Golland [2020]

Figure: Resultant loss.
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What makes this work?

Figure: Illustration of uncurated results for approaching the problem.
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What next?

Can we do better than the fairly naive approach to regularizing w?

Perceptual path length?

D as a regularizer? Probably not ...

Still, a learning-based approach may exist.

Figure: Variety of techniques applied.
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Thanks!

Thanks to Dr Mukherjee, Dr Aviles-Rivero and Professor Schönlieb.

Slides hopefully at https://arthurconmy.github.io/.
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